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ABSTRACT
Edge computing provides critical resources for various latency-
sensitive applications, including, safety-critical monitoring systems
that process large volumes of data from sensors and IoT devices,
employing machine learning pipelines for e�ective and reliable
analysis. Such applications are deployed on specially designed
Edge Sensor Nodes (ESNs) that possess various sensors and limited
computing power and support multiple data analysis tasks. ESNs
encounter unique operational challenges, including intermittent
power supplies, limited connectivity, and dynamic application and
resource requirements, which complicate runtime management.
Conventional resource management platforms like Kubernetes and
KubeEdge are unsuitable for the dynamic needs of ESNs due to
their reliance on centralized control and expected stable conditions.
To bridge this gap, our paper introduces a data-driven resource
management framework tailored for the autonomous adaptation of
ESNs to diverse application and infrastructure requirements. We
propose an intent-based mechanism that aligns application require-
ments, such as end-to-end latency, with infrastructure goals like
utilization levels. This mechanism translates high-level intents into
actionable low-level con�gurations, balancing the competing de-
mands of various applications and resources, thereby guiding us
toward a more robust and e�cient application management sys-
tem. We have implemented a prototype system, evaluated it on
an experimental testbed, and demonstrated that our approach per-
forms better than static-only optimization approaches with minimal
impact on application performance.
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1 INTRODUCTION
Edge computing is a paradigm that brings the computing resources
closer to the data sources and users, reducing latency and improv-
ing performance. It also enhances privacy by allowing on-device

analytics and avoiding the transmission of sensitive data to re-
mote clouds [8, 22]. Edge computing is enabling the development
of smart applications in domains such as robotics, autonomous
vehicles, Augmented Reality and Virtual Reality, smart assistants,
chatbots, and more. Moreover, Edge infrastructures are increasingly
used for safety-critical monitoring systems, such as surveillance,
smart tra�c systems, and environmental monitoring and sens-
ing, by processing the data from sensors and Internet of Things
(IoT) devices [18, 24]. Consequently, these monitoring systems use
resource-intensive Machine Learning (ML) pipelines to pre-process
the data and predict the targeted parameter. We call such devices
as Edge Sensor Nodes (ESNs). Hence, using these Edge resources
e�ciently to support such safety-critical applications reliably is
vital.

ESNs pose unique challenges for runtime management and op-
eration. Most of these devices run on batteries or solar-powered en-
ergy sources, which lack reliable power supplies. Moreover, they are
often connected with low bandwidth and limited network connec-
tions. They support multiple applications, processing large amounts
of streaming data from multiple sensors. Furthermore, once these
devices are installed, accessing them physically is often expensive
or infeasible in many cases. Therefore, managing ESNs in a resource
and energy-e�cient, autonomous manner is necessary.

Current platforms and methods for managing Edge resources
are inadequate for such deployments. For example, Kubernetes [2]
and KubeEdge [1] are popular distributed operating systems or
resource management systems in Edge and Cloud systems. These
systems rely on centralized controllers and assume stable network
and operating conditions. Likewise, some solutions have proposed
lightweight IoT-Edge frameworks [10, 14, 24] that provide Cloud-
like capabilities to Edge nodes. However, these solutions use rule-
based static algorithms to manage the application workloads and
resources at runtime, which are unsuitable for the dynamic envi-
ronments that ESNs operate. This calls for an approach to managing
ESNs that considers the requirements of multiple applications and
deals with the complexities of ESNs.

This paper presents Proteus, a novel data-driven resource man-
agement framework for ESNs that can automatically handle multi-
ple application and resource requirements. Our framework consists
of two main components: (1) a method to monitor the dynamic
application requirements and infrastructure goals and (2) an intent-
based mechanism to ful�ll both the application requirements and
infrastructure goals. Our framework takes into account the cross-
application e�ects on ESNs and balances the trade-o�s between
di�erent requirements arising from multiple applications. In sum-
mary, the key contributions of this paper are:
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• We propose an intent-driven framework for the automated man-
agement of ESNs and application requirements.

• We develop an algorithm for satisfying multiple high-level in-
tents by taking runtime actions and con�guring low-level re-
source and application parameters.

• We implement a small prototype on a real-world testbed and
demonstrate the e�ectiveness of our approach compared to static
baselines.

2 BACKGROUND, MOTIVATION AND
RELATEDWORK

2.1 Edge Sensor Nodes
Edge Sensor Nodes (ESNs) are specialized computing devices that
integrate sensors, computing elements, and application processes
to support real-time applications on the network Edge. These de-
vices are di�erent from conventional Wireless Sensor Networks
(WSNs)-based systems [4] where data sensing, preprocessing, and
analytics are performed at separate locations. WSNs may have
two or three-layer architecture, where a sensor only senses and
measures the elements and transfers the data to gateway nodes
or remote Cloud nodes for processing [15]. In contrast, in ESNs,
data sensing, preprocessing, and analytical tasks are performed on
the same device. It connects to Cloud nodes only when needed to
o�oad computational tasks or log events and results.

This architecture has emerged from the demand for real-time
applications such as wild�re detection, air quality measurement,
oceanic study, and many other scienti�c and real-world applica-
tions, where large amounts of data from multiple sensors have
to be processed continuously in real-time to detect extreme and
unpredictable events. Such applications can be broadly classi�ed
as Environmental Monitoring Applications (EMAs). Many of such
systems, includingWaggle sensor nodes [12] andWISP [3], are now
deployed in multiple places to monitor environmental parameters.

2.2 ML and Environmental Monitoring
Applications (EMAs)

Environmental Monitoring Applications (EMAs) mainly process
and analyze large amount of data to identify patterns or predict
events based on the monitoring data acquired from various sensors.
EMAs that require batch processing use sophisticated physics-based
models, and they often run in High Performance Computing (HPC)
facilities, while real-time EMAs rely on Machine Learning (ML)
models in their pipeline to process the streaming data and predict
the outcome. Therefore, in this work, we focus real-time EMAs that
use ML models.

A typical work�ow of an EMA running in ESN comprises four
primary tasks as shown in Figure 1. First, the Data Acquisition task
reads the data from the corresponding sensors. The quality and fre-
quency of the data sensing are con�gured according to the applica-
tion requirements. Second, the Data Preprocessing task transforms
the raw data into a standard format that is suitable for ML models.
This task may include compressing the data and standardizing or
normalizing the input parameters, as required by the ML models.
Third is the prediction or data analytics task, which is the main task
of the application. Here, MLmodels are used for application-speci�c
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Figure 1: A typical work�ow of ML-based monitoring
applications in the Edge

parameter predictions or for other ML tasks such as classi�cation
or anomaly detection. Finally, the result of this analytics task is
served to the stakeholders or application users. While not all EMAs
may conform to this work�ow, it provides a generic overview of a
typical ML-driven work�ow in EMAs deployed on the Edge.

2.3 Motivation
Managing ESNs deployed for safety-critical monitoring systems is
extremely challenging due to multiple reasons. First, unlike Cloud
data centers or Edge nodes inside micro data centers, where com-
puting devices are deployed in controlled environments, ESNs are
deployed in remote and outdoor locations. Such outdoor deploy-
ments are subject to limited (e.g., battery-powered devices) and
interrupted power supply, unreliable networks, and other unfavor-
able environmental conditions [5, 27]. Thus, executing applications
in a resource and power-e�cient manner is crucial. Second, The
ESNs are complex computing devices, which include computing
elements and multiple sensors, such as cameras, environmental sen-
sors, gyroscopes, and accelerometers, for sensing and measuring
various environmental parameters. This introduces further com-
plexities in managing resources and energy consumption. Third,
these Edge nodes run multiple application work�ows, where each
application work�ow processes streaming data from one or more
onboard sensors, creating resource contention leading to poor per-
formance and failures of work�ow tasks. Finally, each application
requires a di�erent performance or Quality of Service (QoS), depend-
ing on the application, and real-world contexts perceived through
onboard sensory systems. Therefore, executing such critical EMAs
on resource-constrained complex Edge devices is a very di�cult
task.

2.4 Related Work
Resource Management in Existing Platforms: Existing solu-
tions to manage Edge resources are mainly suitable for micro-data
centers and Cloud data centers, which operate in controlled and
reliable operating conditions. For instance, platforms such as Ku-
bernetes [6] are used in controlled Edge and Cloud platforms where
reliable deployment is expected. Kubernetes has many variants,
such as KubeEdge [26], K3s, and MicroK8s [13]. These platforms
extend Kubernetes and support distributed IoT application deploy-
ment of containerized applications. Some recent works also aim to
provide automated resource management frameworks for IoT and
Edge applications. R-pulsar [9, 21] is a framework that provides
programming abstraction to deploy IoT-based applications on Edge
by automating the decisions of where and when data needs to be
processed. Tundo et al. [25] proposed a self-adaptive approach for
energy-aware management of AI applications deployed on the edge
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nodes using a state-based transition technique. Similarly, Oakestra
[11] designs a hierarchical, lightweight, and scalable orchestra-
tion framework for Edge computing using multi-layer worker and
manager components. These solutions expect a reliable centralized
controller system to manage underlying resources, and they assume
the presence of stable operating conditions in the Edge clusters and
do not address the challenges of ESNs explicitly.

Intent-based Resource Management: Intent-based optimiza-
tion has predominantly been applied within the networking domain,
particularly in Software-De�ned Networks (SDNs), commonly re-
ferred to as Intent-Based Networking (IBNs) [17]. Recent e�orts
have extended intent-based frameworks to the optimization of
computing systems. For instance, Hui et al. [23] studied an intent-
based cognitive continuum for resource optimization and adaptive
management across the computing continuum. It provides a con-
ceptual framework with various components for the intent-driven
self-management of application workload and resources. Similarly,
another conceptual framework and a proof of concept for serverless
computing were studied in [20], demonstrating the integration of
intent-based frameworks within the Edge-Cloud computing con-
tinuum. Metsch et al. [19] investigated Intent-Driven orchestration
to comply with Service Level Objectives (SLOs) in Cloud deploy-
ments, integrating their solution with the Kubernetes platform and
outlining a suite of tools—comprising a controller, planner, and ac-
tuators—that govern the life-cycle management of Kubernetes pods.
Some studies have also explored joint optimization of network and
compute resources in vehicular Edge computing platforms [16].

While these studies have explored diverse workloads, our fo-
cus is speci�cally on ESNs and Machine Learning (ML) pipelines
within ESNs, which present distinct challenges. Additionally, the
methodologies employed in the aforementioned studies are com-
plementary to our approach. In the next section, we present our
proposed approach and methodology in detail.

3 METHODOLOGY
This section de�nes the system model and describes architectural
elements for our automated resource management approach.

3.1 System Model
Figure 2 presents a high-level overview of our proposed system
architecture. Initially, applications are deployed within the Edge-
Cloud Continuum, where each application de�nes its expected
Quality of Service (QoS) and concurrently, the hardware infras-
tructure also de�nes its goals/objectives, representing its required
operational state. Often, the requirements of applications and the
goals of the infrastructure present con�icting trade-o�s. Our system
is designed to balance these trade-o�s by simultaneously ful�ll-
ing application requirements and infrastructure goals through our
middleware controller system. First, the infrastructure provides
computational resources to deploy and execute application tasks on
a distributed setup, where application work�ow tasks are mainly
executed on Edge nodes, and if required, Cloud nodes are used
for our work�ow tasks. Infrastructure requirements are de�ned as
Infrastructure Goals. These goals could be available energy budget,
execution cost, and average utilization, representing the desired
state of operation mode. Consequently, applications consume data
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Figure 2: A high-level view of the proposed framework

from the sensors and execute work�ow tasks. Here, we follow an
ML-based application work�ow as de�ned in Figure 2. Each appli-
cation de�nes Application Requirements in terms of expected QoS.
These requirements could be end-to-end latency, de�ned as the
total time required to satisfy a user request, or the cost of computa-
tion or processing rate of user requests. Finally, both the applica-
tion requirements and infrastructure goals are expressed as Intents,
which are implemented with a controller system. A controller is a
middleware system that con�gures application and infrastructure
parameters, balancing both the Application Requirements and In-
frastructure Goals. The main component of our controller is Intent
Manager, which manages trade-o�s between current intents based
on system state.

In the following subsections, we describe the essential compo-
nents of our system model in greater detail.

3.1.1 Infrastructure Model. We model our infrastructure as com-
prising a set of Edge Nodes (EN), where ⇢ = {⇢1, ⇢2, ...⇢<} and
Cloud Nodes (CN), where ⇠ = {⇠1,⇠2, ...⇠=}. Thus, the aggregate
resources available for application deployment are represented by
⇢# [⇠# . Each Edge and Cloud node is distinct in terms of computa-
tional capabilities and available resources, o�ering a heterogeneous
infrastructure for runtime deployment.

3.1.2 Application Model. The infrastructure facilitates multiple
EMAs to process streaming data originating from sensors. We
denote these applications by � = {�1,�2, ...�D }, where each ap-
plication comprises : microservices (as described in Section 2.2).
Consequently, an individual application ( �8 ) is composed of mi-
croservices, �8 = {�1

8 ,�
2
8 , ...�

:
8 }.

3.1.3 Intent Model. Intents are the high-level objectives or goals
that application users and infrastructure providers would like to
achieve. We de�ne an Intent (I), where I = { I1, I2, ... IE }, where
I can be related to applications (and) or infrastructure. It is impor-
tant to note that certain intents may inherently con�ict with others,
necessitating a balance of trade-o�s. For instance, decreasing ap-
plication latency could increase infrastructure resource utilization
and energy consumption.
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3.1.4 Actions. Actions are the mechanisms through which the
system is con�gured. It requires a low-level resource and application
parameters to align with the desired Intent at the time C . These
intents are translated into actions by the controller. Speci�cally,
in our framework, the controller undertakes the critical role of
converting these high-level objectives into actionable low-level
con�gurations.

3.2 Problem Formulation
The overall goal of our system is to satisfy a set of intents as I,
where each intent 8 2 I represents a speci�c objective or desired
infrastructure state. As discussed earlier, intents may have depen-
dencies or constraints that need to be satis�ed. For example, if
intent 81 depends on intent 82 being satis�ed, we represent this con-
straint as: 81 ) 82 Similarly, if intent 83 requires both 81 and 82 to
be satis�ed, we represent it as: 83 ) (81 ^ 82) The overall objective
of the intent-based application is to satisfy the maximum number
of intents while adhering to the de�ned constraints. We represent
this as an optimization problem, where the objective function aims
to maximize the number of satis�ed intents.

max
’
82I

G8 (1)

subject to the intent constraints, where G8 is a binary variable indi-
cating whether intent 8 is satis�ed (1) or not (0). However, solving
this optimization function in Equation 1 is time-consuming and
infeasible for real-time systems. Consequently, in the next section,
we propose an online heuristic algorithm that �nds an e�cient
solution in real-time.

3.3 Proteus: An Heuristic Approach for
Intent-Driven Application Management

We demonstrate our method using a use-case scenario that involves
three sample ML applications on a small-scale testbed, each with
multiple intents and corresponding actions. Table 1 details all the
crucial parameters and their values relevant to this study. Our in-
frastructure setup includes both Edge and Cloud nodes. The three
ML-driven applications, which act as proxies for EMAs, comprise
object detection, image classi�cation, and image-to-text conversion.
The three intents under consideration address application require-
ments (decrease latency, application priority) and infrastructure
objectives (decrease resource utilization). As a result, we tailor our
system to meet these intents through two primary actions: place-
ment and processing rate adjustment. It is essential to note that
while a broader range of intents and actions could be established
based on the needs of the operational system, this study focuses on
a select set of parameters to test and evaluate our approach.

A system can express its current intent; however, translating
that into implementable actions necessitates con�guring low-level
application and resource parameters that in�uence the behavior of
the system. This process includes twomain steps: (1) Identifying the
right con�guration for the relevant intent requires domain-speci�c
knowledge of the infrastructure and applications under consider-
ation. (2) Resolving intent trade-o�s, where the implementation
of one intent could adversely a�ect other intents in place. For in-
stance, decreasing resource utilization necessitates an action such
as migrating a task bound to an ESN to a CN, which could impact

the intent to decrease latency.
Translating Intent toActions.Weadopt a straightforward heuristic-
based approach to translate high-level intents into actionable steps,
as depicted in Algorithm 1. We adjust our system at each time
interval C in our method. For every interval C , applications are
sorted based on their current priority. Each intent follows the fol-
lowing actions. The application priority intent is given precedence
over the other two intents, as priority indicates the urgency of
an EMA based on real-world contextual settings. For the highest
priority application, we designate the placement at the ESN, where
all microservices of this application are exclusively located, and the
processing rate is set to high. To decrease latency utilization intent,
we maintain the placement of all applications at the ESN and set the
processing rate to low. This strategy aims to provide a low-latency
response to all applications, balancing it with the processing rate
(number of requests per second). Conversely, for decreasing the re-
source utilization intent, all applications except the highest priority
one have their placement con�gured to the CN and the processing
rate set to default, indicating a lower operational utilization of the
ESNs. While these actions are e�ective in ideal scenarios where an
individual intent is applied at any given moment, the presence of
multiple applications with varying intents necessitates resolving
the constraints between intents.

Algorithm 1: Heuristic Algorithm for Intent Satisfaction
Input: I, Current state of system
Output: Set of actions, reorganized system

1 for C in time interval ) do
2 for 8 in Intent set I do
3 � 

sortApplicationsinAscendingOrder(�.Priority);
4 for � 9 in � do
5 con�gs IndentifyCon�gurations();
6 con�gs checkConstraints();
7 applyAction(con�gs);
8 end
9 end

10 end

Resolving Intents Trade-o�s. Since application priority takes
precedence over the other two intents, we apply its actions straight-
forwardly, without modi�cation. However, we need to adapt the
actions of the other two intents (decreasing latency and resource
utilization), which have direct trade-o�s with each other. Actions
related to decreasing latency and resource utilization that decide
placement and processing rate con�gurations con�ict with each
other. To resolve this, we dynamically adapt our actions based on
the current user workload and system state. We set the ESN’s max-
imum and minimum CPU usage and processing rate threshold for
each application. If an application’s placement at the ESN is within
the accepted processing rate threshold, we attempt to place the
application’s microservices at the ESN and follow the processing
rate with the highest value among the two intents. In the case of
a threshold violation, at interval C , we �rst halve the processing
rate and observe the usage threshold since the placement decision
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to CN drastically increases application latency. If halving the pro-
cessing rate does not satisfy the threshold set, at the next interval
C , we move the lowest priority application microservice to the CN,
followed by others as necessary. Conversely, if the processing rate
and CPU threshold are within limits, we try to increase the pro-
cessing rate to the previous value and placement at the ESNs. This
ensures that we continuously implement the intent to re�ect the
desired behavior for both application requirements and infrastruc-
ture goals, considering the dynamics of user workload level and
resource usage.

4 PERFORMANCE ANALYSIS
4.1 Implementation
The proposed framework is implemented in the Python language,
realizing Algorithm 1. Our controller thread creates a main thread
that controls the business logic of the algorithm, while the three
Edge applications are deployed as independent microservices and
run inside dockerized containers. We decompose each application
into two main microservices: data acquisition and inference. The
preprocessing and noti�cation microservices, as described in Figure
1, are part of the inference microservice since, in our setup, they
require minimal processing cycles due to the use of curated existing
datasets.

We employ the ImageNet dataset as a test dataset for all three
applications. We generate workload for these applications using
Locust 1. The Edge node collects its own utilization metrics at
prede�ned intervals using the “psutil" tool and updates the system
state.

4.2 Experimental Setup
We have deployed our system on the Grid5000 cluster [7] , con�g-
uring it to emulate a real-world Edge Sensor Node (ESN) infrastruc-
ture. Speci�cally, we utilize two nodes: one serves as the ESN and
the other as the Cloud Node (CN). To avoid expensive boot time
of starting a container microservice, we run the same container
images in both ESN and CN and dynamically route the requests.
As user workload level varies, our controller dynamically routes
requests between ESNs and CNs, representing a placement decision.
Additionally, it adjusts the processing rate (number of concurrent
users) in accordance with the controller’s logic. We benchmarked
three applications by running them in isolation on ESN to deter-
mine the maximum processing rate threshold. Table 2 displays the
latency achieved by each individual application when the minimum
processing rate (1) and the maximum processing rate (number of
concurrent users, with each user rate set to 1) are selected, up until
the point where the application microservices execute all requests
without failures. Similarly, we set a minimum ESN’s CPU usage
threshold of 50% and a maximum of 90%. We set C to 5 minutes, and
run the experiments for a total of 1 hour () ).

Baselines: We use the following two baselines to compare with
our approach.
• static_decrease_latency: This is a static approach that aims to
reduce the application end-to-end latency of all applications. It
deploys all application services on ESN only.

1https://locust.io/

• static_decrease_resource_util: This is a static approach that
aims to reduce the overall resource utilization of ESN. It deploys
application services belonging to the highest priority application
on ESN and the other two applications’ inference microservices
on CN.

Workload Generation: For each application, the workload in-
volves processing an image and providing inference results accord-
ing to the speci�c ML model integrated within the application. In
this process, each user request selects a random image from the test
dataset, which is then sent to the application’s inference microser-
vices as a byte array via an HTTP POST request. The microservice
preprocesses this payload, converting it into an input feature vec-
tor, which is subsequently passed to the deployed ML model for
inference.

The volume of workload (measured in the number of concurrent
users) for each application at time C is stochastically chosen within a
range de�ned by a minimum of 1 and a maximum derived from the
benchmarks presented in Table 2. This stochastic approach allows
us to evaluate our framework under highly dynamic workload
conditions.

4.3 Results and Analysis
We conducted the experiments three times and reported the average
values in our results. We analyze the end-to-end latency, the failure
rate of requests, and the average CPU utilization level of the Edge
Sensor Node (ESN). Figure 3 illustrates the latency experienced
by di�erent applications across three approaches. The x-axis of
the plot denotes the applications, while the y-axis quanti�es the
latency (in seconds). This latency is the average of all requests that
received a response. The static_decrease_latency approach yields the
lowest average latency across all applications, whereas static_de-
crease_resource_util exhibits higher average latency. This outcome
is anticipated, as the ESN-only deployment avoids costly REST API
calls with payloads to CN, thereby reducing total latency. Whereas
our approach balances this trade-o�, considering the current ap-
plication context and priorities, and dynamically utilizes both ESN
and CN for user requests, achieving, on average, better latency than
static_decrease_resource_util with a marginal trade-o� compared
to the static_decrease_latency approach. However, the static_de-
crease_latency approach results in the highest request failure rate,
as observed in Figure 4. This is attributed to ESN frequently expe-
riencing resource overload conditions, causing the containerized
microservices to fail in processing user requests, which then time
out. Nevertheless, a signi�cant failure rate is also observed with
the static_decrease_resource_util approach, which, despite distribut-
ing requests more e�ectively than the static latency approach, still
su�ers from overloads at the CN, as two out of three applications
receive requests during peak workload conditions at CN. On the
other hand, by dynamically varying the processing of requests and
routing them between ESN and CN at regular intervals, our ap-
proach experiences the lowest failure rate compared to the other
two baselines.

Finally, we present the average CPU utilization of the ESN in Ta-
ble 3. E�ective resource utilization at the ESN is important, as ESN
operates within limited computational power and energy availabil-
ity constraints. As observed, the static_decrease_latency approach
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Table 1: The domain of the parameters used in our research problem.

Parameters De�nitions Values
Infrastructure Available resources including Edge and Cloud nodes {Edge nodes (EN), and Cloud nodes(CN)}
Applications List of applications in consideration {Object-detection, Image-classi�cation, Image-to-text}
Intents High level objectives of applications and infrastructures {Decrease Latency, Application Priority, Decrease Resource Utilization}
Actions List of actionable measures to satisfy intents {Placement, Processing rate }

App Average latency
(sec)

Max users
(rate=1) Max latency

Object-detection 0.38 110 1.75
Image-classi�cation 0.25 210 1.35
Image-to-text 0.27 170 1.53

Table 2: Average end-to-end latency with minimum andmax-
imum workload threshold to applications with Edge-only
deployment when applications run in isolation on ESN.

static_decrease_latency static_decrease_resource_util Proteus
CPU usage
(%) 95.3% 73.1% 87.6%

Table 3: Average CPU usage of ESN during the experiments
period

exhibits the highest average CPU usage at 95.3%, indicating near-full
utilization consistently. In contrast, the static_decrease_resource_-
util approach demonstrates lower CPU usage at 73.1%, as it only
processes the workloads of one application out of three in each
time step C . Consequently, our approach achieves an average CPU
utilization of 87.6%, utilizing the ESN e�ectively while avoiding
resource overload, unlike the static_decrease_latency approach.

In summary, the results demonstrate that Proteus delivers im-
proved Quality of Service (QoS) for applications by enabling dy-
namic adaptation of the system, taking into account runtime con-
texts, application requirements, and the state of the infrastructure.

Figure 3: Average latency of di�erent approaches during the
experiments period. Monitored all user requests using the
Locust workload generator.

Figure 4: Average failure rate of user requests of di�erent
approaches during the experiments period.

5 FUTURE RESEARCH DIRECTIONS
The intent-driven approach represents a promising avenue for real-
izing an automated resource management framework within dis-
tributed systems. However, several challenges and limitations exist
to achieve this goal successfully. Here, we will discuss the future
works that tackle these limitations, aiming to seamlessly integrate
the intent-driven mechanism into the management of distributed
Edge and Cloud resources and applications at large.

5.1 A Standardized Framework to De�ne
Intents

Intents are, by design, high-level abstractions meant to articulate
the desired goals of system administrators and users. Currently,
there are no standardized methods for de�ning an intent. Intents
should be informed by the expected impact on relevant perfor-
mance metrics and their interplay with other intents. We anticipate
that existing methodologies like Resource Description Frameworks
(RDFs) could facilitate the structured de�nition of intents and es-
tablish the ontology of a system and its dependencies. Nevertheless,
existing RDFs are tailored for web resources and applications. Thus,
broadening the RDF concept to include the de�nition of ESNs and
CNs, their low-level resource parameters, and application work-
�ows would aid in clearly de�ning and establishing structured
relationships among multiple intents.

6



Proteus: Towards Intent-driven Automated Resource Management Framework for Edge Sensor Nodes FlexScience ’24, June 3–4, 2024, Pisa, Italy

5.2 Compilation of High-level Intents into
Low-level Con�gurations and Appropriate
Actions

The high-level goals must be translated into low-level con�gu-
rations across resources and application parameters in order to
achieve an intent in runtime. Next, the values for these con�gura-
tions must be estimated to guarantee that appropriate actions are
carried out. For now, this translation is performed manually using
heuristics directed by experts. However, an automated compiler is
necessary for large-scale systems with thousands of heterogeneous
nodes and application components in order to understand the intent
and identify the set of possible resource and application parame-
ters that must be adjusted while trading o� with other intents and
actions already in place.

This process would necessitate continuous monitoring of all
parameters and systematic benchmarking of the system to collect
a su�cient knowledge base. This would make it possible to build
categorization or prediction models, which are essential for map-
ping the correct low-level con�gurations for a given intent. We also
need optimization techniques that translate intents into actions.
Metaheuristic or learning-based agent systems o�er an interesting
line of research to explore these issues.

5.3 Pluggable Interfaces for Integrating into
Existing Middle-ware Tools

Contemporary resource management and middleware systems,
such as Kubernetes and OpenStack, are designed to con�gure sys-
tems based on rule-based policies. However, intent-based resource
management introduces new challenges, including the need to man-
age multiple application components for a single action and the
requirement for continuous monitoring of both the system and the
intents. These challenges necessitate the development of new soft-
ware interfaces capable of monitoring and applying intent-driven
actions in real-time. A component-based service composition will
help to easily implement intent-driven middleware systems.

6 CONCLUSIONS
We proposed an approach for the automated resource management
of Edge Sensor Nodes (ESNs) and managing ML-driven application
work�ows on them. We especially focused on Edge monitoring
applications and addressing the challenges of managing them on
ESNs. Our proposed framework, Proteus, considers the high-level
objectives of application requirements and infrastructure goals and
translates them into real-time actionable measures. This method
o�ers an e�ective strategy for managing complex distributed ESN
infrastructure while simultaneously meeting application demands.
Our preliminary experiments and analysis of results indicate that
our approach can reduce application latency and achieve better
resource utilization compared to static-only methods. In future
work, we aim to expand this work and develop a generic frame-
work suitable for a diverse range of heterogeneous Edge-Cloud
con�gurations and a wide set of Edge applications.
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