
On Optimizing Hyperparameters for Quantum Neural Networks

Sabrina Herbst Vincenzo De Maio Ivona Brandic∗

Abstract

The increasing capabilities of Machine Learning (ML) mod-
els go hand in hand with an immense amount of data and
computational power required for training. Therefore, train-
ing is usually outsourced into HPC facilities, where we have
started to experience limits in scaling conventional HPC
hardware, as theorized by Moore’s law. Despite heavy par-
allelization and optimization efforts, current state-of-the-art
ML models require weeks for training, which is associated
with an enormous CO2 footprint. Quantum Computing,
and specifically Quantum Machine Learning (QML), can of-
fer significant theoretical speed-ups and enhanced expressive
power. However, training QML models requires tuning var-
ious hyperparameters, which is a nontrivial task and subop-
timal choices can highly affect the trainability and perfor-
mance of the models. In this study, we identify the most
impactful hyperparameters and collect data about the per-
formance of QML models. We compare different configu-
rations and provide researchers with performance data and
concrete suggestions for hyperparameter selection.

1 Introduction

With the exponential increase of data of recent years, Ma-
chine Learning (ML) has become a key technology for ana-
lytics and pattern recognition [10]. Beyond that, ML mod-
els are becoming prevalent in everyday life, as, for example,
Large Language Models (LLMs) assist in day-to-day tasks.
However, these models require a lot of training time and are
associated with a significant CO2 footprint. Meta’s Llama
2 LLMs require between 184,320 and 1,720,320 GPU hours
for pretraining, which is associated with between 31.22 and
291.42 tCO2 equivalents [51] (as a comparison, the EU27
per-capita fossil fuel emissions for 2021 were 6.25 tCO2

∗Vienna University of Technology, Vienna, Austria, sab-
rina.herbst@tuwien.ac.at, {vincenzo,ivona}@ec.tuwien.ac.at

equivalents [7]). These factors, together with the recently
reached limit of the Von Neumann architecture, motivate
the need to scale computational and storage resources to
meet the increasing demand of modern ML applications.
The most promising path is the integration of Non-Von Neu-
mann architectures, such as Quantum Computing, into the
HPC continuum [47].

Quantum computers exploit principles of quantum me-
chanics, resulting in speed-ups over classical computers for
certain computations, and pave the way to entirely novel so-
lutions [14]. Recent quantum computing advances, and the
accessibility of quantum machines in the cloud, have opened
the doors to quantum computing for researchers across vari-
ous disciplines [9]. Quantum Machine Learning (QML), i.e.,
extending the learning paradigm to quantum computers, has
emerged as a promising area of research, which could offer
significant advantages in terms of runtime, performance, and
space efficiency [38].

However, several problems limit the adoption of QML.
First, the small number of qubits that is available today lim-
its the input data. Moreover, only Noisy Intermediate-Scale
Quantum (NISQ) technology will be available in the near
future [41], meaning current and near-term quantum hard-
ware exhibits significant levels of noise, resulting in errors
during computation [44]. Furthermore, encoding classical
data into a quantum state can be computationally intensive
and could cancel out potential runtime benefits [34]. Finally,
the model architecture can strongly affect its performance
and determining the optimal choice poses an optimization
problem with an intractable search space [45]. To this date,
there exist only few studies, with limited scope, investigat-
ing these hyperparameters.

Our contribution. We collect data about QML models
by investigating the influence of different hyperparameters
on their performance. We select four classical classification
datasets, identify the main hyperparameters, and evaluate
their impact on the runtime and predictive performance of
the models. Further, we study the impact of hardware noise

1

ar
X

iv
:2

40
3.

18
57

9v
1

 [
cs

.L
G

]
 2

7
M

ar
 2

02
4

on the different hyperparameters.
We focus on Quantum Neural Networks (QNNs),

due to their relevance for near-term hardware [4], and
on tabular data as the number of available quantum bits
(qubits) limits the input data. We employ the IBM Qiskit
package and the included simulators [42] for our evaluation.
We choose Qiskit as a programming language, as it is a
standard for publicly available state-of-the-art quantum ma-
chines, which can be used with quantum backends besides
IBM, such as Amazon1 or AQT2. One caveat of using the
package is that it allows only limited configuration options,
reducing the possibility of adapting the models. Nonethe-
less, given the limited accessibility of quantum computers,
this work will support scientists and practitioners in further-
ing research in QML with these very machines by providing
data and guidelines for hyperparameter tuning. To the best
of our knowledge, this work constitutes the biggest publicly
available study for QNN architectures to this date.
Our results show that the optimizer and initialization

method constitute the most important hyperparam-
eters for QNNs. Entangling the feature map can be favor-
able, but requires efficient initialization to overcome issues
during training. The exact entangling strategy has a negli-
gible effect on the performance of the model in our setting.
All code and results are available publicly3.
We structure the paper as follows: first, we provide pre-

liminary concepts and related work in Section 2. In Section 3
we describe our methodology. The experimental setup and
evaluation are discussed respectively in Section 4 and Sec-
tion 5. Our experimental results are discussed in Section 6,
including threats to validity of this work. Finally, we con-
clude our paper in Section 7.

2 Background

2.1 Quantum Information Theory

Classical computers work with bits, which are either in
state 0 or 1. In quantum computing, the so-called com-
putational basis is composed of the states |0⟩ and |1⟩. A
single-qubit quantum state |ϕ⟩ forms a linear combination

1https://github.com/qiskit-community/

qiskit-braket-provider. Accessed: 04.01.2024
2https://github.com/qiskit-community/qiskit-aqt-provider.

Accessed: 04.01.2024
3https://github.com/sabrinaherbst/hyperparameters_qnn

of these two states, called a superposition, represented as
|ϕ⟩ = α |0⟩ + β |1⟩, with α, β ∈ C and |α|2 + |β|2 = 1. |ϕ⟩
is in both states at the same time, but takes the value of
|0⟩ with probability |α|2 and |1⟩ with probability |β|2, once
we measure the state. Quantum parallelism harnesses this
phenomenon, allowing quantum computers to concurrently
represent multiple states, rather than needing to evaluate
each state separately.

Another peculiarity of quantum computing is quantum en-
tanglement, where multiple qubits are correlated, such that
performing an action on one qubit will impact all qubits it
is entangled with as well. Superposition and entanglement
are usually exploited in quantum algorithms to achieve sig-
nificant speed-ups.

2.2 Quantum Machine Learning

Data
x

Encoding
V (x)

Initial

Θ⃗

Circuit U

V (x)⊗
U(Θ⃗)

Evaluate

C(Θ⃗)
End?

Optimize

Θ⃗

New

Θ⃗
No

Yes

Input

Classical Computer

Quantum Computer

Figure 1: Quantum Neural Networks

Working with classical data on quantum computers re-
quires an effective strategy for encoding the information into
a quantum state [38, p.25-28]. Exploiting the unique charac-
teristics of a quantum computer increases the chance of ob-
taining an advantage, therefore, it is recommended to choose
an encoding that is hard to obtain or simulate on a classical
computer [12].

Similarly to classical ML, several classification algorithms
exist, including Quantum Support Vector Machines [43] or
K-Means Clustering [31], both with an exponential speed-
up compared to the classical algorithms. However, Quan-

2

https://github.com/qiskit-community/qiskit-braket-provider
https://github.com/qiskit-community/qiskit-braket-provider
https://github.com/qiskit-community/qiskit-aqt-provider
https://github.com/sabrinaherbst/hyperparameters_qnn

tum Neural Networks (QNNs) have come up as one of the
leading algorithms that could achieve a quantum advantage
on NISQ technology, due to their simple architecture and
training process [4].

QNNs are depicted in Figure 1. Initially, classical data
is encoded into a quantum state using a feature encoding
method V . The inputs to the algorithm are a parametrized
quantum circuit U (ansatz), which is a sequence of trainable
unitary transformations, and associated initial parameters
Θ⃗. The goal is to find parameters Θ⃗ that minimize the
cost function C, i.e., cross-entropy for classification. After
executing the circuit, the parameters Θ⃗ are optimized on a
classical computer using an optimizer, such as ADAM [24]
or COBYLA [40]. The parameters are then transferred to
the quantum computer, where the circuit is executed again.
The process is repeated until a certain termination criterion
is reached (i.e., maximum number of iterations, tolerance
threshold). The different choices for feature map, ansatz
and optimizer can highly impact the results.

Currently, one of the biggest challenges in QNNs is miti-
gating the Barren Plateau (BP) phenomenon. BPs cause
the gradient of the cost function to vanish exponentially in
problem size, rendering optimization of the parameters dif-
ficult [4]. In particular, randomly initialized deep circuits
are subject to these plateaus [33]. This has been extended
for shallow ones and linked to the structure of the cost func-
tion [5]. Furthermore, BPs have been linked to expressiv-
ity [18], entanglement [37] and noise [53]. Ways to over-
come them include different parameter initialization strate-
gies [57, 13, 54], or limiting the size of the accessible Hilbert
space through, e.g., problem-specific ansatzes [52, 15].

2.3 Related Work

In [48], the influence of the type of data, classical transfor-
mations on data, and feature encoding techniques on QML
models, focusing on amplitude encoding and the ZZFea-
tureMap, are investigated. The authors generate synthetic
datasets using different transformations and apply various
rotations to them. They observe that amplitude encoding
is less affected by transformations than the ZZFeatureMap
is. As rotating the dataset improves some models, the au-
thors propose a strategy of rotating it to create a different
representation. The approach aligns with the idea of [46],
suggesting that appropriately scaling the data may be ben-
eficial in QML.

Mancilla and Pere employ Classical and Quantum ML
in [32] and compare different feature reduction techniques.
They find that Linear Discriminant Analysis (LDA) out-
performs Principal Component Analysis (PCA) for QML
models. Hancco-Quispe et al. report similar results in [16].

Joshi et al. [21] investigate local optimizers in QNNs us-
ing EfficientSU2 as the ansatz and ZFeatureMap as the fea-
ture map. They compare the performance using AQGD and
COBYLA to classical machine learning models in analyzing
sentiment data. The QNN with AQGD outperforms the
other models.

Moreover, the authors in [50] compare the performances
of a hybrid deep learning model and a QNN. They consider
different feature map, ansatz and optimizer combinations
for the QNN and find significant differences in performance.

Piatrenka and Rusek [39] perform experiments using dif-
ferent configurations for the iris dataset. They experiment
using ZFeatureMap, ZZFeatureMap and a PauliFeatureMap
with custom Pauli gates. Regarding the ansatz, they only
experiment using the RealAmplitudes one, but vary the rep-
etitions. For the optimizer, they consider SPSA, COBYLA
and SLSQP. They find that one repetition of the PauliFea-
tureMap and two repetitions of the RealAmplitudes ansatz
work best. Furthermore, they report that COBYLA and
SLSQP outperform SPSA. The authors run their experi-
ments on simulators and a real quantum computer and find
big performance differences between the executions.

Moreover, Katyayan and Joshi propose a model for clas-
sifying questions in [22]. They use a TwoLocal ansatz and
experiment with all three of Qiskit’s feature maps. They find
that the PauliFeatureMap works best, that a small depth is
advantageous, and that the features strongly influence the
output.

Finally, Joshi et al. compare classical ML models to quan-
tum ones on sentiment analysis in [20]. They find that quan-
tum models slightly outperform the classical models in their
configuration. They employ a PauliFeatureMap using cus-
tom Pauli gates and COBYLA as the optimizer. The Ef-
ficientSU2 ansatz with 100 epochs outperforms the other
models.

Other works, such as [25, 2] define Automated Machine
Learning (AutoML) for QML by proposing algorithms for
automatically tuning the QML hyperparameters.

3

3 Methodology

In the following, we describe our methodology, the chosen
datasets and selected QNN hyperparameters.

3.1 Data

We choose datasets with low dimensionality, due to the lim-
ited qubits on the IBM Quantum Open Access Plan4.
We consider (1) the KDD Cup 1999 dataset [30], a

well-known public classification dataset for intrusion detec-
tion, (2) the Cover Type dataset, whose goal is to predict
the cover type of forest squares based on cartographic at-
tributes [3], (3) the Glass Identification dataset [11], used
to identify types of glass for forensics at crime scenes, and
(4) the Rice dataset, for binary classification between two
types of rice [26, 6]. All datasets are available on the UCI
Machine Learning repository [23].
The datasets offer diverse characteristics. While the Rice

dataset is only for binary classification, both Glass Identi-
fication and Cover Type have seven target categories and
the KDD Cup dataset distinguishes between 22 different at-
tacks. The Glass Identification dataset consists of only 214
samples, whereas the other datasets exceed our maximum
training samples of 400. We apply a One-Hot Encoding for
categorical features and compare PCA and LDA for reduc-
ing the dimensionality to seven features. We do not employ
LDA for the Rice dataset, as it would lead to only one fea-
ture. As the encoding we choose employs one qubit per
feature, entangling the qubits would not be possible any-
more.

3.2 Optimizers

We employ COBYLA [40], SPSA [49] and Nelder-Mead [36]
as optimizers. Both COBYLA and SPSA are extensively
used in the QML literature, as mentioned in Section 2.3.
We also select Nelder-Mead due to its popularity on different
quantum optimization problems [55, 35, 29].
SPSA is a gradient-based method, which is known to work

well in the presence of noise5. It calculates the objective

4Note: The plan was changed after we conducted the experiments.
IBM used to offer free seven-qubit-machines for the public, now larger
machines are available but with a ten-minute time constraint per
month.

5https://qiskit.org/documentation/stubs/qiskit.algorithms.

optimizers.SPSA.html. Accessed 17.06.2023

function using only two measurements, irrespective of the
number of parameters involved in the optimization prob-
lem. Nelder-Mead is a heuristic gradient-free method which
performs unconstrained optimization, and is based on the
simplex algorithm. COBYLA is gradient-free as well, but
uses trust regions instead and can be used for constrained
optimization. By utilizing optimizers with diverse charac-
teristics, we aim to identify which type of optimizer is likely
to lead to high accuracy for QML models.

3.3 Ansatzes

Ansatzes are characterized by the circuit structure, i.e., the
sequence of operations and the employed entanglement.

3.3.1 Circuit Structure

The ansatz defines the trainable parameters of the circuit.
We select four popular ansatzes from the Qiskit package,
which are widely used in QML [21, 22, 39] and relevant for
near-term hardware: PauliTwoDesign, RealAmplitudes, Ef-
ficientSU2 and TwoLocal. The ansatzes are built by repeat-
edly applying alternating rotation and entanglement blocks.
The number of repetitions can be tuned and defines the cir-
cuit depth.

RX|Y |Z gates are used for rotations around the X, Y and
Z axes of the Bloch sphere, which is a geometrical rep-
resentation of a qubit, the angle defined by the learnable
parameters θ⃗. Furthermore, two qubits are entangled us-
ing entanglement gates, which are either controlled-X gates
or controlled-Z gates. They perform an X/NOT operation
(|0⟩ → |1⟩, |1⟩ → |0⟩, see Equation 1) or Z (|0⟩ → |0⟩,
|1⟩ → − |1⟩, see Equation 2) transformation on one qubit
(called the target), should the other one (control) be in state
|1⟩.

X =

(
0 1
1 0

)
(1) Z =

(
1 0
0 −1

)
(2)

For better illustration, we show the RealAmplitudes
ansatz in Figure 2. The RY operations rotate the individual
qubits around the y-axis of the Bloch sphere, with an an-
gle defined by the trainable parameter θ. The operations in
between are the controlled-NOT gates (CNOT), which en-
tangle the qubits. The target qubit is denoted as

⊕
and the

control qubit as •. The rotation and entanglement blocks
are repeated three times in this case, making up an ansatz

4

https://qiskit.org/documentation/stubs/qiskit.algorithms.optimizers.SPSA.html
https://qiskit.org/documentation/stubs/qiskit.algorithms.optimizers.SPSA.html

q0 : RY (θ[0]) • RY (θ[3]) • RY (θ[6]) • RY (θ[9])

q1 : RY (θ[1]) • RY (θ[4]) • RY (θ[7]) • RY (θ[10])

q2 : RY (θ[2]) RY (θ[5]) RY (θ[8]) RY (θ[11])

Figure 2: RealAmplitudes Ansatz

of depth three. The goal of training is to find the optimal
angles θ⃗.

We experiment with the entanglement hyperparameter,
leaving all others to their default values. Additionally, for
TwoLocal, as suggested in the Qiskit documentation, we uti-
lize the RY rotation and controlled-X entanglement block.

We experiment using Qiskit’s default initialization (uni-
form in range [0, 1]), the beta distribution, as proposed
in [27], and the normal distribution with σ2 = 1

L , where
L is the number of layers [56].

3.3.2 Qubit Entanglement

Another design choice is how to entangle qubits. Possible
choices are full (each qubit is entangled with all others),
linear (qubit qi is entangled with qi+1, with i ∈ [0, N − 2]
where N is the number of qubits), circular (linear, plus qN−1

is entangled with q0), or sca (shifted-circular-alternating).

In sca entanglement, the target and control qubit of the
entanglement gates are swapped in each block. Furthermore,
the entanglement strategy is similar to circular. Qubits
qN−1 and q0 are entangled in the first iteration before all
others. In the next iteration, first q0 and q1 are entangled,
then qN−1 and q0, and then the rest. The entanglement
between qN−1 and q0 is ”shifted” in every iteration. We
exclude reverse-linear due to its similarity to the linear hy-
perparameter choice.

TwoLocal additionally supports pairwise entanglement
(in even layers, qubit qi is entangled with qi+1, in uneven
ones with qi−1).

3.4 Encoding

Working with classical data on quantum computers requires
encoding the information into a quantum state. A very
simple example of data encoding is the so-called basis en-
coding. The value, for example the number 5, is trans-
formed into a binary string (101) and each bit is trans-

lated into the quantum counterpart, requiring three qubits:
5 → 101 → |1⟩ |0⟩ |1⟩ = |101⟩ [38, p.25-26].
We employ a feature map based encoding, as proposed by

Havlicek et al. [17]. It uses a quantum feature map to trans-
form the features and aims to exploit the dimensionality of
the Hilbert space.

Equation 3 shows the so-called Pauli expansion circuit. i
refers to the imaginary unit and n to the number of qubits.
P is a set of Pauli gates, consisting of X, Y (see Equation 4),
Z, and identity gates I.

UΦ(x) = exp(i
∑
S⊆[n]

ϕS(x)
∏
i∈S

Pi) (3)

Y =

(
0 −i
i 0

)
(4)

S ∈ (nk) describes the connections between the qubits. The
connections are influenced by k ∈ {1, . . . , n}, the entangle-
ment hyperparameter and the Pauli matrices. ϕS(x) refers
to a non-linear function. Equation 5 shows the default non-
linear function in Qiskit. 6.

ϕS(x) =

{
x0, k = 1∏

j∈S(π − xj), else
(5)

The tensor product of n Hadamard gates (see Equation 6)
is then applied to the input qubits (all in state |0⟩), which
puts them in an equal superposition of all possible states (if
we measure we have the same probability for all 2n states).
Afterward, the Pauli expansion circuit is applied. The two
operations can be repeated arbitrary times. Equation 7
shows the final feature map with two repetitions.

H =
1√
2

(
1 1
1 −1

)
(6)

|Φ(x)⟩ = UΦ(x)H
⊗nUΦ(x)H

⊗n|0⟩n (7)

Qiskit provides two variants: ZZFeatureMap and ZFea-
tureMap. The ZFeatureMap sets k = 1 and P0 = Z, hence
not entangling the qubits, and the ZZFeatureMap sets k = 2,
P0 = Z and P0,1 = ZZ. The implementations use one qubit
for every feature present in the data. We leave all hyper-
parameters of the ZFeatureMap to their default values. We
optimize the entanglement strategy for the ZZFeatureMap,
which allows the same options as TwoLocal.

6https://qiskit.org/documentation/stubs/qiskit.circuit.

library.PauliFeatureMap.html. Accessed 20.06.2023.

5

https://qiskit.org/documentation/stubs/qiskit.circuit.library.PauliFeatureMap.html
https://qiskit.org/documentation/stubs/qiskit.circuit.library.PauliFeatureMap.html

4 Experimental Setup

4.1 Hardware Specifications

Quantum simulators have the advantage of being capable of
simulating a perfect quantum computer on a classical one
without any noise, allowing to create baselines to compare
the results to experiments executed on real quantum ma-
chines. By incorporating noise models in simulators, one
can obtain a more accurate idea of the results on a real
quantum computer [19].

Thus, we conduct our experiments using quantum sim-
ulators, specifically, we employ the simulators provided by
Qiskit Aer. We first run the experiments on a perfect simu-
lator, before incorporating noise models generated from real
machines. We choose a noise model from IBM’s 7-qubit
quantum computer called “Perth”7.

While quantum simulators have several advantages, e.g.,
availability and controlled noise, phenomena that are in-
herently quantum (i.e., entanglement) are computationally
intense to simulate on a classical computer, which makes
comparing runtimes more difficult. Therefore, we analyze
and compare the runtime mainly for aspects which can also
be expected on real quantum hardware (e.g., number of pa-
rameters or circuit depth).

We run our experiments on a Intel(R) Xeon(R) CPU E5-
2623 v4 (16 cores @ 2.60GHz) server with 128GB RAM and
a Debian/GNU Linux 11 OS. We use Python v3.11.7 and the
IBM Qiskit framework v0.43 [42] for the implementation.

4.2 Experiments

We evaluate all hyperparameter configurations of Section 3,
summing up to 1512 configurations per dataset and noise
configuration. We compare our setup to related work in
Table 1.

Concerning optimizers, to assess the convergence behav-
ior and set an appropriate iteration count for every dataset,
noise setting and optimizer, we plot the training loss at dif-
ferent iterations. For COBYLA, convergence typically oc-
curs within a range of 250 to 500 iterations. The SPSA
optimizer converges within 125 to 300 iterations, and the
Nelder-Mead optimizer within 100 to 250 iterations. Addi-
tionally, we apply early stopping with a tolerance value of

7Available through https://docs.quantum.ibm.com/api/qiskit/

qiskit.providers.fake_provider.FakePerth. Accessed 16.01.2024

0.1 for the loss function, which is supported by COBYLA
and Nelder-Mead.

Moreover, SPSA and Nelder-Mead work by probing solu-
tions (which is done in so-called steps) and only move on to
the next iteration if they accept the step. We define the ter-
mination criterion based on the number of iterations, how-
ever, in the results section, we analyze the runtime of these
two optimizers based on the number of steps they took. To
avoid any confusion with the reported numbers, we want to
actively highlight that the terms iteration and step are not
used interchangeably in our analysis.

Furthermore, we activate the adaptive hyperparame-
ter option to improve convergence of Nelder-Mead, which
adapts the algorithm’s parameters to the problem dimen-
sionality, since the optimizer struggles to find a reasonable
path in some scenarios.

Since the runtime increases quickly with more data, we
limit the samples used in the experiments to a maximum of
400 samples for training and 250 for testing the final models,
which limits the runtime to ten hours. The trained models
are evaluated using the accuracy and weighted f-1 score.

5 Results

To better visualize the results, we define the set of best and
worst configurations as those that are within 10% accuracy
of the best or worst one overall. Furthermore, we study
how noise affects the configurations by running a pairwise
analysis, comparing them with and without noise directly.

To ensure statistical significance, we perform non-
parametric statistical tests with a significance level of 5%. In
particular, we choose a Friedman Test for dependent distri-
butions of more than two groups and the Wilcoxon Signed
Rank test for two dependent distributions. Moreover, we
use the Kruskal-Wallis test for independent distributions of
more than two groups and the Mann-Whitney-U test for
independent distributions of two groups.

In the following, we distinguish between observations,
which are general patterns we identify and main findings,
which are consistent patterns that constitute key insights
into QNN training.

5.1 Overview

The accuracy for the noiseless and noisy KDD Cup exper-
iments ranges from 0%-97%. The top five configurations

6

https://docs.quantum.ibm.com/api/qiskit/qiskit.providers.fake_provider.FakePerth
https://docs.quantum.ibm.com/api/qiskit/qiskit.providers.fake_provider.FakePerth

#Dataset Prepr. Feat. Map F. Ent. Ansatz A. Ent. Opt. Init. Noiseless Noisy
[48] 5 ✓ ✓ ✓
[32] 2 ✓ ✓
[16] 1 ✓ ✓
[21] 1 ✓ ✓
[50] 1 ✓ ✓ ✓ ✓
[39] 1 ✓ ✓ ✓ ✓ ✓
[22] 1 ✓ ✓ ✓ ✓
[20] 1 ✓ ✓ ✓

This work 4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Comparison of Studies Investigating QNN Hyperparameters

Acc. F-1 Time [s] Ansatz/Entanglement Optimizer Feature Map/Ent. Prepr. Init
Noiseless
0.972 0.965 3848 EfficientSU2/sca SPSA ZZFeatureMap/sca LDA Beta
0.968 0.961 3740 EfficientSU2/sca SPSA ZZFeatureMap/linear LDA Beta
0.964 0.960 3413 EfficientSU2/sca COBYLA ZZFeatureMap/circular LDA Beta
0.964 0.959 3022 EfficientSU2/sca COBYLA ZZFeatureMap/pairw. LDA Beta
0.972 0.958 2598 RealAmplitudes/circular SPSA ZFeatureMap LDA Beta
Noisy
0.968 0.954 7300 TwoLocal/linear COBYLA ZFeatureMap LDA Beta
0.960 0.950 6462 TwoLocal/sca COBYLA ZFeatureMap LDA Beta
0.964 0.948 6248 TwoLocal/pairw. COBYLA ZFeatureMap LDA Beta
0.960 0.944 6947 RealAmplitudes/linear COBYLA ZFeatureMap LDA Beta
0.960 0.944 8569 EfficientSU2/linear SPSA ZFeatureMap LDA Beta

Table 2: KDD Cup: Top Five Configurations

according to the f-1 score in the different settings are shown
in Table 2. We choose the f-1 score as the final criterion, as
it represents both Precision and Recall equally, rather than
just the ratio of correctly predicted samples. All use LDA
for preprocessing and beta distribution initialization. Most
of the best configurations in the noiseless setting use Effi-
cientSU2 and ZZFeatureMap. In the noisy one, TwoLocal
and ZFeatureMap are more frequent. The mean difference
between the configurations with and without noise is at 10%
accuracy, with a standard deviation of 11%. The minimum
difference lies at 0%, the maximum at 67%.

Both results for the noisy and noiseless Cover Type ex-
periments range from 2%-61% accuracy. We show the top
five configurations from both settings in Table 3. Again,
the noisy configurations are slightly worse, all use LDA for
dimensionality reduction and most configurations use beta
distribution initialization and ZZFeatureMap in both set-

tings.

The mean difference in accuracy between noisy and noise-
less configurations is 4% with a standard deviation of 3%.
Figure 3 shows that more than 75% of configurations have
a difference < 8%, the maximum being at 30%. Noisy simu-
lators lead to significantly better results for the Cover Type
dataset. However, the best models in the noiseless setting
outperform the best ones in the noisy setting.

The results from the Rice dataset are shown in Table 4.
The noiseless results range from 7%-91% accuracy, while
the noisy ones range from 9%-90%. The configurations with
and without noise differ 3% on average in accuracy, with
a standard deviation of 3%. We again find configurations
with exactly the same performance, however, the maximum
difference lies at 36%. Only ZFeatureMap configurations
with beta distribution initialization are among the best ones
in both settings.

7

Acc. F-1 Time [s]] Ansatz/Entanglement Optimizer Feature Map/Ent. Prepr. Init
Noiseless
0.612 0.612 2066 EfficientSU2/circular COBYLA ZZFeatureMap/linear LDA Beta
0.608 0.612 2097 EfficientSU2/linear SPSA ZZFeatureMap/sca LDA Beta
0.612 0.610 886 PauliTwoDesign/full COBYLA ZZFeatureMap/pairw. LDA Beta
0.616 0.609 1422 RealAmpl./linear SPSA ZFeatureMap LDA Nor.
0.612 0.605 2100 EfficientSU2/circular SPSA ZZFeatureMap/circular LDA Beta
Noisy
0.608 0.600 1867 TwoLocal/linear SPSA ZZFeatureMap/pairw. LDA Beta
0.616 0.593 2031 RealAmpl./linear COBYLA ZFeatureMap LDA Beta
0.588 0.592 2493 RealAmpl./circular COBYLA ZZFeatureMap/circular LDA Beta
0.596 0.592 3190 PauliTwoDesign/full COBYLA ZZFeatureMap/linear LDA Beta
0.596 0.588 1922 TwoLocal/full COBYLA ZZFeatureMap/linear LDA Beta

Table 3: Cover Type: Top Five Configurations

Figure 3: Cover Type: Absolute Difference in Accuracy

We show the top five configurations with and without
noise for the Glass Identification dataset in Table 5. Our
models had problems fitting the data, with the highest ac-
curacy at only 62%, which could be due to the limited sam-
ples. The results without noise range from 2%-62%, and
with noise from 0%-53% accuracy. The mean accuracy dif-
ference between configurations with and without noise is
7%, with a standard deviation of 6%. While the minimum
difference is at 0%, the maximum is at 34%.

5.2 Initialization

Main Finding 1: Beta initialization performs signifi-
cantly better than both normal and uniform initialization
in all settings. We find no significant differences between
normal and uniform initialization in most settings.

Therefore, the lower bounds on the magnitude of the gra-
dient when using the normal distribution for initialization
from [56], did not lead to significantly better results in our
experiments. We give a detailed overview of the significance
tests in the appendix.

Figure 4 shows the performance of the different initializa-
tion methods for the Cover Type dataset. Our results are
therefore consistent with the conjecture from [27], that ini-
tializing using the beta distribution can lead to better train-
ability. Our results extend their work by applying large-scale
real-world datasets beyond the Wine and Iris datasets tested
in their study.

Nonetheless, we want to point out that, for the Cover
Type dataset, in the noiseless and noisy setting, 8% and 5%
of the beta initialized configurations, compared to 1% and
< 1% of uniform and normal configurations, are in the set
of worst configurations. Therefore, while leading to signif-
icantly better results for some configurations, beta initial-
ization can impact the results negatively as well. However,
we find this pattern to be dependent on the dataset, as the
pattern for the other datasets is not as clear.

When comparing the noiseless and noisy settings, we find

8

Acc. F-1 Time [s] Ansatz/Entanglement Optimizer Feature Map/Ent. Prepr. Init
Noiseless
0.916 0.915 612 TwoLocal/pairw. COBYLA ZFeatureMap PCA Beta
0.904 0.902 1411 RealAmplitudes/linear SPSA ZFeatureMap PCA Beta
0.900 0.899 668 RealAmplitudes/circular COBYLA ZFeatureMap PCA Beta
0.896 0.895 688 RealAmplitudes/sca COBYLA ZFeatureMap PCA Beta
0.896 0.895 8023 TwoLocal/sca COBYLA ZFeatureMap PCA Beta
Noisy
0.908 0.907 7470 PauliTwoDesign SPSA ZFeatureMap PCA Beta
0.896 0.895 4785 RealAmplitudes/sca COBYLA ZFeatureMap PCA Beta
0.896 0.895 4518 TwoLocal/pairw. COBYLA ZFeatureMap PCA Beta
0.896 0.894 4573 TwoLocal/sca COBYLA ZFeatureMap PCA Beta
0.892 0.890 9214 EfficientSU2/full COBYLA ZFeatureMap PCA Beta

Table 4: Rice: Top Five Configurations

Acc. F-1 Time [s] Ansatz/Entanglement Optimizer Feature Map/Ent. Prepr. Init
Noiseless
0.604 0.571 608 EfficientSU2/linear COBYLA ZZFeatureMap/sca PCA Beta
0.627 0.561 470 EfficientSU2/sca COBYLA ZFeatureMap LDA Beta
0.558 0.546 641 TwoLocal/linear SPSA ZZFeatureMap/circular PCA Beta
0.581 0.538 302 EfficientSU2/circular COBYLA ZFeatureMap LDA Beta
0.534 0.535 663 RealAmplitudes/sca SPSA ZZFeatureMap/circular PCA Beta
Noisy
0.534 0.519 342 RealAmplitudes/sca COBYLA ZZFeatureMap/circular LDA Beta
0.488 0.497 3590 EfficientSU2/full COBYLA ZZFeatureMap/full PCA Beta
0.511 0.487 1959 TwoLocal/sca SPSA ZZFeatureMap/linear PCA Beta
0.511 0.471 1853 PauliTwoDesign COBYLA ZFeatureMap PCA Nor.
0.488 0.465 503 TwoLocal/pairw. SPSA ZFeatureMap LDA Nor.

Table 5: Glass Identification: Top Five Configurations

that all initialization methods work significantly better with-
out noise for KDD Cup. Beta initialization works better
in the noiseless setting for the Rice dataset, while we find
no difference for the other initialization methods and noise
settings. Only beta initialization works significantly bet-
ter without noise for Cover Type and Glass Identification,
while uniform leads to better results when noise is intro-
duced. Normal initialization for Glass Identification also
works significantly better with noise.

Furthermore, uniform initialization takes significantly less
time in the Cover Type noiseless settings, and in all KDD
Cup and Glass Identification settings, than beta and normal
do. For KDD Cup and Cover Type, we find that this is
mainly due to it stopping between 100-450 steps earlier for

Nelder-Mead configurations. For Glass Identification, we
were not able to pin it down to one factor.

Normal initialization is significantly faster than beta in
all settings except for the Rice dataset, which is explained
by COBYLA requiring between 10 and 50 more iterations
for beta than for normal. We find no significant runtime
differences for the noiseless Rice dataset, but uniform ini-
tialization takes significantly longer than both others in the
noisy setting. We find no clear patterns explaining the be-
havior, however.

9

Figure 4: Cover Type, Noiseless: Initialization vs. Accuracy

5.3 Optimizer

Main Finding 2: SPSA and COBYLA significantly out-
perform Nelder-Mead in all settings. We find no consis-
tent performance patterns for COBYLA and SPSA, but
COBYLA takes significantly less time in all settings.

Nelder-Mead fails to provide a reasonable optimization
path, which can be seen from convergence plots such as the
one shown in Figure 5. The only time we find Nelder-Mead
in the set of best configurations is in the Glass Identification
noisy setting.

While the algorithm is commonly used, there are rela-
tively few theoretical studies on convergence [1]. Several
inefficiencies and pitfalls are known, however, the authors
in [28] identify several reasons why it is still commonly used.
First, it is a fairly simple algorithm and, secondly, improves
very quickly over current solutions even though it may not
converge to optima. Finally, if the method works, it requires
few function evaluations, which is particularly relevant for
compute-expensive cost functions, where the derivatives are
difficult or even impossible to compute.

COBYLA is significantly better than SPSA for the KDD
Cup noiseless setting, whereas SPSA significantly outper-
forms COBYLA on all Cover Type and the noiseless Glass
Identification settings. We find no significant difference be-
tween the two optimizers for the noisy KDD Cup and Glass

Figure 5: KDD Cup: Nelder-Mead Convergence

Figure 6: KDD Cup, Noiseless: Optimizer vs. Accuracy

10

Identification and all Rice settings. Nonetheless, in all cases,
they are equally represented among the set of best configu-
rations.

Figure 6 visualizes the performance of the different op-
timizers for the noiseless experiments on the KDD Cup
dataset. Beta initialization leads to significantly better re-
sults for SPSA and COBYLA, however not for Nelder-Mead,
suggesting that it does not lead to a position in the loss land-
scape that allows a better optimization path irrespective of
the optimizer.

All optimizers are significantly better in the noiseless
KDD Cup and Rice settings than in the noisy ones. For
the Cover Type dataset, COBYLA and Nelder-Mead per-
form significantly better in the noisy setting, in contrast to
SPSA, which performs better in the noiseless one. We find
no significant differences for COBYLA, SPSA to perform
better without noise, and Nelder-Mead to perform signifi-
cantly better with noise for the Glass Identification dataset.

COBYLA is significantly faster than SPSA and Nelder-
Mead in all settings, as is SPSA compared to Nelder-Mead.

5.4 Ansatz

Observation: There are no significant differences be-
tween the ansatzes for any dataset, neither in the noiseless
nor noisy setting. However, PauliTwoDesign performs
slightly worse in mean and is usually less represented
among the best configurations.

In particular, while mean and standard deviation are very
similar across all ansatzes, PauliTwoDesign has less extreme
minima and maxima, exhibiting a more stable performance
when compared to the other ansatzes: for the Cover Type
noisy setting, the minimum is 5% accuracy, compared to
1%-2% for the other ansatzes, and for the KDD Cup noisy
setting, the maximum is 89%, compared to 96%. The same
can be observed for the noiseless Glass Identification dataset,
with a minimum of 6%, compared to 2% accuracy for the
others, and a maximum of 51%, compared to 53%-62%.
These patterns are not ever-present, but we observe a ten-
dency in our experiments.

When we directly compare noisy and noiseless settings, we
find that all ansatzes are significantly better without noise
for the KDD Cup and Rice datasets. We find no differences
for EfficientSU2 on Cover Type, PauliTwoDesign to perform
better without noise, and RealAmplitudes and TwoLocal to

lead to better results in the noisy setting. For the Glass
Identification dataset, we find no differences for EfficientSU2
and TwoLocal, and RealAmplitudes and PauliTwoDesign to
perform significantly better without noise.

All ansatzes are significantly faster than EfficientSU2.
The longer runtime of EfficientSU2 is explained by the de-
fault configuration employing more rotation gates than the
other ansatzes, resulting in twice the amount of trainable
parameters. Our results imply that these additional param-
eters do not necessarily lead to better performance. There-
fore, it may be favorable to stick to the less parametrized
and, hence, faster ansatzes. We visualize the runtimes in
Figure 7.

Figure 7: KDD Cup, Noiseless: Ansatz vs. Runtime

5.5 Ansatz Entanglement

Observation: We find no consistent patterns regard-
ing the performance of the different ansatz entanglement
strategies.

For KDD Cup and Cover Type, neither the noiseless nor
noisy experiments show any significant differences for the
ansatz entanglement strategies. When we compare the noisy
and noiseless settings directly, we find no significant differ-
ences either. We find some significant differences for the
Glass Identification and Rice dataset, however, no consistent
patterns. For completeness, we list them in the appendix.

11

5.6 Feature Map

Observation: Beta initialization boosts the performance
of ZZFeatureMap configurations in most settings signifi-
cantly. Still, the performance of the feature maps is de-
pendent on the dataset.

ZFeatureMap is significantly better than ZZFeatureMap
in the KDD Cup noiseless, and in all Cover Type and
Glass Identification settings. Still, we find that the ma-
jority of best configurations use ZZFeatureMap in these set-
tings. This sounds counterintuitive at first, however, beta
initialization boosts the performance of ZZFeatureMap con-
figurations by 12%-16% accuracy in mean, compared to 2%-
5% for ZFeatureMap. Hence, ZZFeatureMap configurations
are significantly worse without beta initialization than ZFea-
tureMap ones, explaining the significance tests. Still, beta
initialization boosts the performance of ZZFeatureMap con-
figurations to make up the set of best configurations.
Entanglement in a circuit, as is used in ZZFeatureMap

compared to ZFeatureMap, has been linked to BPs [37]. Our
results suggest that the proposed beta initialization helps to
cope with them, as the performance difference to normal
and uniform is significant. We visualize the different feature
maps and initializations in Figure 8.

Figure 8: Cover Type, Noiseless: Feature Map vs. Initial-
ization

In contrast, there are no significant differences between

Figure 9: Rice, Noisy: Feature Map vs. Initialization

the feature maps in the KDD Cup noisy setting and all
Rice settings. Here, the very best configurations are ZFea-
tureMap ones. For KDD, we find that beta initialization
does not boost the performance of ZZFeatureMap as much.
Interestingly, for the Rice dataset, beta initialization boosts
ZFeatureMap configurations a lot more (19%-22% accuracy
in mean) than ZZFeatureMap ones (7%-9%), i.e., the behav-
ior is reversed (see Figure 9).

When comparing noisy and noiseless settings, we find no
consistent patterns. Considering runtime, ZZFeatureMap
configurations take significantly longer than ZFeatureMap
ones, since the non-linearity and entanglement between the
qubits strongly increase the computational complexity of
feature encoding.

5.7 Feature Map Entanglement

Observation: Similarly to the ansatz entanglement,
there are no consistent significant differences between the
strategies.

We again find significant differences in some experiments,
however, no consistent patterns. Still, full entanglement
is usually underrepresented among the best configurations.
We again refer to the appendix for further information.

We find no consistent significant differences when directly
comparing noisy and noiseless settings.

12

5.8 Preprocessing

Observation: LDA works significantly better than PCA
in most settings or at least leads to a majority of best
configurations. This suggests that it may transform the
loss landscape in a way that aids optimization.

While PCA outperforms LDA in the KDD noiseless and
noisy settings, about 60% of the best configurations use LDA
as a preprocessing step in both settings. LDA significantly
outperforms PCA for the Cover Type dataset, with 98% of
the best configurations using LDA in both the noisy and
noiseless setting. Furthermore, we find LDA to perform sig-
nificantly better in the Glass Identification noiseless (1%
accuracy in mean) and noisy (4%) setting. We observe a
tendency that the choice for this hyperparameter depends
on the dataset, which we elaborate on in the appendix.

Furthermore, in Figure 10, we observe that beta initial-
ization boosts the performance for LDA more than for PCA.
The pattern cannot be observed for the Glass Identification
dataset, where beta initialization boosts the performance of
both preprocessing techniques by 10%-11% in mean for the
noiseless and by 5%-6% in the noisy setting.

LDA arranges the features in a way that better separates
the different classes, whereas PCA focuses on keeping the
variance in the data. Beta initialization boosts the mean
performance of PCA configurations for the KDD Cup and
Cover Type datasets about 10% in our experiments, com-
pared to 20% for LDA. Our results therefore suggest that
LDA can transform the loss landscape such that, given a
good starting point, the model is likely to end up in a better
solution than with PCA.

When we directly compare the configurations with and
without noise, we find that PCA and LDA are significantly
better without noise for the KDD Cup dataset (5% differ-
ence in accuracy in mean). For the Cover Type dataset, we
find no significant differences for LDA, but PCA works sig-
nificantly better with noise (1% in mean). For Glass Identi-
fication, we find no significant differences for PCA, but LDA
works significantly better with noise (2%).

When considering the runtime, we find no significant dif-
ferences for the KDD Cup dataset, but PCA configurations
run significantly longer than LDA ones for the Cover Type
and Glass Identification datasets. We find that COBYLA
PCA configurations take more iterations in mean than LDA
ones, as do Nelder-Mead ones, explaining the runtime dif-

ference. Furthermore, the significantly longer convergence
could also indicate that the loss landscape of PCA configu-
rations can be more difficult to navigate than LDA ones.

Figure 10: KDD Cup, Noiseless: Preprocessing vs. Initial-
ization

5.9 Further Analysis

One of the most prevalent patterns we discover is that the
optimizer is the most crucial hyperparameter to set. Using
Nelder-Mead in our experiments consistently led to under-
performing configurations, independently of any other hy-
perparameters.

Furthermore, our results show that the initialization strat-
egy plays a crucial role. Nonetheless, we find that the ini-
tialization strategy does not necessarily help all optimizers.
Figure 11 shows that even when combining initialization and
optimizer, the optimizer is the most influential parameter for
a model’s performance.

6 Discussion

Our experiments gave us valuable insights into tuning hy-
perparameters for QNNs. The empirical evidence we gath-
ered suggests that the choice of optimizer and initializa-
tion method is crucial. In particular, COBYLA and SPSA
seem to both be reasonable choices for the optimizer. Since

13

Beta Normal Static
K C G R K C G R K C G R

Beta 0.35 7e-4 0.84 0.54 0.45 0.55 0.81 0.22
Normal 0.35 7e-4 0.84 0.54 0.69 7e-5 0.81 0.12
Static 0.45 0.55 0.81 0.22 0.69 7e-5 0.81 0.12

Table 6: Initialization with Beta Distribution Mean and SD: Significance Tests

Figure 11: KDD Cup, Noisy: Optimizer vs. Initialization

COBYLA configurations are usually faster, we suggest us-
ing it as a starting point. Furthermore, it is favorable to use
beta initialization compared to random and normal one, in
particular when employing an entangled feature map.

Although ZFeatureMap was often significantly better
than ZZFeatureMap, in most settings, the best configura-
tions use ZZFeatureMap. Based on the significant perfor-
mance differences between beta initialized and non-beta ini-
tialized configurations for ZZFeatureMap compared to ZFea-
tureMap, we hypothesize that entanglement-induced barren
plateaus occur and that a clever initialization strategy can
indeed help in finding better optimization trajectories.

Main Finding 3: While beta distribution initialization
works significantly better than all others in our main ex-
periments, post-hoc tests reveal that it is not the prob-
ability distribution, but rather the range of values used,
that is indicative of the likelihood of encountering a BP.
This stresses the importance of exploring the theoretical
aspects of parameter initialization further.

After looking at the significant results, we were curious
about why exactly beta distribution initialization works
so much better than the other two. Therefore, we ran
two additional post-hoc tests, initializing all parameters
to the mean of the beta distribution, and using a normal
distribution with the mean and standard deviation of the
chosen beta distribution. We hardly found any significant
differences between the three techniques, which we visualize
in Table 6. Red/green means the row is significantly
worse/better than the column on the specific dataset (K:
KDD Cup, C: Cover Type, G: Glass Identification, R:
Rice), whereas yellow denotes no significant differences. We
test using a Wilcoxon test with a significance level of 0.05
and the numbers denote the p-value.

Furthermore, to our knowledge, there are no indicators
of a causal relationship between the distribution of the data
and the parameters determining the rotations applied in the
circuit (as is assumed in [27]). Therefore, it is an open ques-
tion whether certain value ranges just lead to better initial
positions, or there indeed is a connection between the two,
which would be important to study from a theoretical point
of view.

The ansatzes perform similarly on average, however, some
are more likely to lead to higher-performing outliers. There-
fore, we advise starting with RealAmplitudes, which can be
used out-of-the-box and takes less time than EfficientSU2.
Also, TwoLocal is a good option, however, the entangle-
ment and rotation gates have to be set accordingly. We
found hardly any significant differences between entangle-
ment strategies, therefore believe using the default option is

14

a good start.
We find that the entanglement strategy has a negligible

effect on the performance of the model. We hypothesize that
entangling the qubits is indeed important to exploit quan-
tum effects, however, the actual way this is done does not
seem to have an impact on the performance of the models.
For the KDD Cup and Cover Type dataset, using beta

initialization in combination with LDA significantly boosts
the performance of the models, therefore, all the best mod-
els use LDA. We hypothesize that, as LDA separates the
classes during preprocessing already, this, together with ad-
vantageous initial starting points from beta initialization,
can lead to better trainability of the model.

6.1 Threats to Validity

Scope of the experiment: While the experiments on the four
datasets allowed us to draw valuable conclusions, the results
could vary with different ones.
Reduced dataset: It is a well-known fact that ML models

profit from more data. As we had to limit the training sam-
ples, the results could vary when rerunning the experiments
with the whole dataset.
Scalability: NISQ hardware and the complexity of sim-

ulating quantum computers limit today’s experiments. It
remains an open research question what happens when the
experiments are scaled from tens to hundreds or thousands
of qubits.
Architecture: We chose the general-purpose QASM simu-

lator [8] for our experiments, however, there are few studies
comparing the performance of different simulators. There-
fore, the results may differ when using a different one.

7 Conclusion and Future Work

In this work, we have emphasized the potential of QML
in addressing the challenges of Post-Moore era. However,
the complexity of the models, combined with few hyperpa-
rameter tuning studies with only limited scope to this date,
hinder the adoption and further exploration. Therefore, we
have collected data about the performance of QML models
on various datasets using different hyperparameter config-
urations with and without noise and evaluated our results
rigorously. Our results support researchers and practition-
ers who want to explore QML and potential applications
further, by providing starting points for tuning the models.

Besides collecting data, our experiments on real-world
datasets provided us with evidence that initializing using
the Gaussian distribution, as proposed in [56], does not lead
to advantages over initializing using a uniform distribution
in training the models. Furthermore, in contrast to the con-
jecture from [27], we found in additional experiments that
the beta distribution itself does not necessarily lead to better
initial points and therefore to better predictive performance
of the models. Indeed, we mostly found no significant dif-
ferences when initializing using a normal distribution with
the same mean and standard deviation as the beta distribu-
tion, and initializing all parameters to the mean of the beta
distribution.

Nonetheless, given the importance of theoretically study-
ing these models further, in particular with respect to train-
ability issues such as BPs, we plan to further explore the
model space and loss landscapes. While it seems that clever
initialization can mitigate BPs to some extent, we want to
consider why certain initial parameter ranges result in bet-
ter models overall. Also, we plan to extend this study by
considering different types of datasets and different types of
quantum architectures.

Acknowledgements

This work has been partially funded through the Rucon
project (Runtime Control in Multi Clouds), Austrian Sci-
ence Fund (FWF): Y904-N31 START-Programm 2015, by
the CHIST-ERA grant CHIST-ERA-19-CES-005, Austrian
Science Fund (FWF), Standalone Project Transprecise Edge
Computing (Triton), Austrian Science Fund (FWF): P
36870-N, and by Flagship Project HPQC (High Performance
Integrated Quantum Computing) # 897481 Austrian Re-
search Promotion Agency (FFG). We acknowledge the use
of IBM Quantum services for this work. The views expressed
are those of the authors, and do not reflect the official policy
or position of IBM or the IBM Quantum team.

References

[1] Cezar-Mihail Alexandru, Ella Bridgett-Tomkinson,
Noah Linden, Joseph MacManus, Ashley Montanaro,
and Hannah Morris. Quantum speedups of some
general-purpose numerical optimisation algorithms.

15

Quantum Science and Technology, 5(4):045014, sep
2020.

[2] Raúl Berganza Gómez, Corey O’Meara, Giorgio Cor-
tiana, Christian B. Mendl, and Juan Bernabé-Moreno.
Towards autoqml: A cloud-based automated circuit ar-
chitecture search framework. In 2022 IEEE 19th In-
ternational Conference on Software Architecture Com-
panion (ICSA-C), pages 129–136, Honolulu, HI, USA,
2022. IEEE.

[3] Jock Blackard. Covertype. UCI Ma-
chine Learning Repository, 1998. DOI:
https://doi.org/10.24432/C50K5N.

[4] M. Cerezo, Andrew Arrasmith, Ryan Babbush, Si-
mon C. Benjamin, Suguru Endo, Keisuke Fujii, Jar-
rod R. McClean, Kosuke Mitarai, Xiao Yuan, Lukasz
Cincio, and Patrick J. Coles. Variational quantum algo-
rithms. Nature Reviews Physics, 3(9):625–644, August
2021.

[5] M. Cerezo, Akira Sone, Tyler Volkoff, Lukasz Cincio,
and Patrick J. Coles. Cost function dependent barren
plateaus in shallow parametrized quantum circuits. Na-
ture Communications, 12(1):1791, Mar 2021.

[6] Ilkay Cinar and Murat Koklu. Classification of rice
varieties using artificial intelligence methods. Interna-
tional Journal of Intelligent Systems and Applications
in Engineering, 7:188–194, 09 2019.

[7] M. Crippa, D. Guizzardi, M. Banja, E. Solazzo,
M. Muntean, E. Schaaf, F. Pagani, F. Monforti-
Ferrario, J. Olivier, R. Quadrelli, A. Risquez Martin,
P. Taghavi-Moharamli, G. Grassi, S. Rossi, D. Jacome
Felix Oom, A. Branco, J. San-Miguel-Ayanz, and E. Vi-
gnati. Co2 emissions of all world countries - 2022 report,
2022.

[8] Andrew W. Cross, Lev S. Bishop, John A. Smolin, and
Jay M. Gambetta. Open quantum assembly language,
2017.

[9] Gennaro De Luca. A Survey of NISQ Era Hybrid
Quantum-Classical Machine Learning Research. Jour-
nal of Artificial Intelligence and Technology, 2(1):9–15,
2022.

[10] Amir H. Gandomi, Fang Chen, and Laith Abualigah.
Machine Learning Technologies for Big Data Analytics.
Electronics, 11(3):421, January 2022.

[11] B. German. Glass Identification. UCI Ma-
chine Learning Repository, 1987. DOI:
https://doi.org/10.24432/C5WW2P.

[12] Takahiro Goto, Quoc Hoan Tran, and Kohei Nakajima.
Universal Approximation Property of Quantum Ma-
chine Learning Models in Quantum-Enhanced Feature
Spaces. Physical Review Letters, 127(9):090506, August
2021.

[13] Edward Grant, Leonard Wossnig, Mateusz Os-
taszewski, and Marcello Benedetti. An initialization
strategy for addressing barren plateaus in parametrized
quantum circuits. Quantum, 3:214, December 2019.

[14] Laszlo Gyongyosi and Sandor Imre. A Survey on quan-
tum computing technology. Computer Science Review,
31:51–71, February 2019.

[15] Stuart Hadfield, Zhihui Wang, Bryan O’Gorman,
Eleanor G. Rieffel, Davide Venturelli, and Rupak
Biswas. From the quantum approximate optimization
algorithm to a quantum alternating operator ansatz.
Algorithms, 12(2), 2019.

[16] Juan Kenyhy Hancco-Quispe, Jordan Piero Borda-
Colque, and Fred Torres-Cruz. Quantum machine
learning applied to the classification of diabetes. ArXiv,
abs/2301.00109, 2022.

[17] Vojtěch Havĺıček, Antonio D. Córcoles, Kristan
Temme, Aram W. Harrow, Abhinav Kandala, Jerry M.
Chow, and Jay M. Gambetta. Supervised learn-
ing with quantum-enhanced feature spaces. Nature,
567(7747):209–212, March 2019.

[18] Zoë Holmes, Kunal Sharma, M. Cerezo, and Patrick J.
Coles. Connecting ansatz expressibility to gradient
magnitudes and barren plateaus. PRX Quantum,
3:010313, Jan 2022.

[19] He-Liang Huang, Xiao-Yue Xu, Chu Guo, Guojing
Tian, Shi-Jie Wei, Xiaoming Sun, Wan-Su Bao, and
Gui-Lu Long. Near-term quantum computing tech-
niques: Variational quantum algorithms, error mitiga-
tion, circuit compilation, benchmarking and classical

16

simulation. Science China Physics, Mechanics & As-
tronomy, 66(5):250302, April 2023.

[20] Nisheeth Joshi, Pragya Katyayan, and Syed Afroz
Ahmed. Comparing Classical ML Models with Quan-
tum ML Models with Parametrized Circuits for Senti-
ment Analysis Task. Journal of Physics: Conference
Series, 1854(1):012032, April 2021.

[21] Nisheeth Joshi, Pragya Katyayan, and Syed Afroz
Ahmed. Evaluating the Performance of Some Local Op-
timizers for Variational Quantum Classifiers. Journal
of Physics: Conference Series, 1817(1):012015, March
2021.

[22] Pragya Katyayan and Nisheeth Joshi. Supervised Ques-
tion Classification on SelQA Dataset Using Variational
Quantum Classifiers. In International Conference on
Innovative Computing and Communications, volume
492, pages 695–706. Springer Nature Singapore, Sin-
gapore, 2023.

[23] Markelle Kelly, Rachel Longjohn, and Kolby Notting-
ham. The uci machine learning repository, 2023.

[24] Diederik P. Kingma and Jimmy Ba. Adam: A method
for stochastic optimization, 2017.

[25] Toshiaki Koike-Akino, Pu Wang, and Ye Wang. Au-
toqml: Automated quantum machine learning for wi-fi
integrated sensing and communications. In 2022 IEEE
12th Sensor Array and Multichannel Signal Processing
Workshop (SAM), pages 360–364, Trondheim, Norway,
2022. IEEE.

[26] M. Koklu, I. Cinar, and Y. S. Taspinar. Rice (Cam-
meo and Osmancik). UCI Machine Learning Reposi-
tory, 2019.

[27] Ankit Kulshrestha and Ilya Safro. Beinit: Avoid-
ing barren plateaus in variational quantum algorithms.
In 2022 IEEE International Conference on Quantum
Computing and Engineering (QCE), pages 197–203,
Broomfield, CO, USA, 2022. IEEE.

[28] Jeffrey C. Lagarias, James A. Reeds, Margaret H.
Wright, and Paul E. Wright. Convergence properties
of the nelder–mead simplex method in low dimensions.
SIAM Journal on Optimization, 9(1):112–147, 1998.

[29] Xinwei Lee, Yoshiyuki Saito, Dongsheng Cai, and
Nobuyoshi Asai. Parameters fixing strategy for quan-
tum approximate optimization algorithm. In 2021
IEEE International Conference on Quantum Comput-
ing and Engineering (QCE), pages 10–16, 2021.

[30] Richard Lippmann, Joshua W Haines, David J Fried,
Jonathan Korba, and Kumar Das. The 1999 DARPA
off-line intrusion detection evaluation. Computer Net-
works, 34(4):579–595, October 2000.

[31] Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost.
Quantum algorithms for supervised and unsupervised
machine learning, 2013.

[32] Javier Mancilla and Christophe Pere. A Preprocess-
ing Perspective for Quantum Machine Learning Classi-
fication Advantage in Finance Using NISQ Algorithms.
Entropy, 24(11):1656, November 2022.

[33] Jarrod R. McClean, Sergio Boixo, Vadim N. Smelyan-
skiy, Ryan Babbush, and Hartmut Neven. Barren
plateaus in quantum neural network training land-
scapes. Nature Communications, 9(1):4812, Nov 2018.

[34] Nimish Mishra, Manik Kapil, Hemant Rakesh, Amit
Anand, Nilima Mishra, Aakash Warke, Soumya
Sarkar, Sanchayan Dutta, Sabhyata Gupta, Aditya
Prasad Dash, Rakshit Gharat, Yagnik Chatterjee, Shu-
varati Roy, Shivam Raj, Valay Kumar Jain, Shree-
ram Bagaria, Smit Chaudhary, Vishwanath Singh,
Rituparna Maji, Priyanka Dalei, Bikash K. Behera,
Sabyasachi Mukhopadhyay, and Prasanta K. Panigrahi.
Quantum Machine Learning: A Review and Current
Status. In Data Management, Analytics and Innova-
tion, volume 1175, pages 101–145. Springer Singapore,
Singapore, 2021.

[35] Charles Moussa, Henri Calandra, and Vedran Dunjko.
To quantum or not to quantum: towards algorithm se-
lection in near-term quantum optimization. Quantum
Science and Technology, 5(4):044009, oct 2020.

[36] J. A. Nelder and R. Mead. A Simplex Method for Func-
tion Minimization. The Computer Journal, 7(4):308–
313, January 1965.

[37] Carlos Ortiz Marrero, Mária Kieferová, and Nathan
Wiebe. Entanglement-induced barren plateaus. PRX
Quantum, 2:040316, Oct 2021.

17

[38] Davide Pastorello. Concise guide to quantum ma-
chine learning. Springer, Singapore, 2023. OCLC:
1362515386.

[39] Ilya Piatrenka and Marian Rusek. Quantum Variational
Multi-class Classifier for the Iris Data Set. In Computa-
tional Science – ICCS 2022, volume 13353, pages 247–
260. Springer International Publishing, Cham, 2022.

[40] M. J. D. Powell. A Direct Search Optimization Method
That Models the Objective and Constraint Functions
by Linear Interpolation. In Advances in Optimization
and Numerical Analysis, pages 51–67. Springer Nether-
lands, Dordrecht, 1994.

[41] John Preskill. Quantum Computing in the NISQ era
and beyond. Quantum, 2:79, August 2018.

[42] Qiskit contributors. Qiskit: An open-source framework
for quantum computing, 2023.

[43] Patrick Rebentrost, Masoud Mohseni, and Seth Lloyd.
Quantum Support Vector Machine for Big Data Clas-
sification. Physical Review Letters, 113(13):130503,
September 2014.

[44] Salonik Resch and Ulya R. Karpuzcu. Benchmark-
ing Quantum Computers and the Impact of Quantum
Noise. ACM Computing Surveys, 54(7):1–35, Septem-
ber 2022.

[45] Maria Schuld and Nathan Killoran. Is Quantum Advan-
tage the Right Goal for Quantum Machine Learning?
PRX Quantum, 3(3):030101, July 2022.

[46] Maria Schuld, Ryan Sweke, and Johannes Jakob Meyer.
Effect of data encoding on the expressive power of varia-
tional quantum-machine-learning models. Physical Re-
view A, 103(3):032430, March 2021.

[47] Martin Schulz, Dieter Kranzlmüller, Laura Brandon
Schulz, Carsten Trinitis, and Josef Weidendorfer. On
the inevitability of integrated hpc systems and how they
will change hpc system operations. In Proceedings of
the 11th International Symposium on Highly Efficient
Accelerators and Reconfigurable Technologies, HEART
’21, New York, NY, USA, 2021. Association for Com-
puting Machinery.

[48] Daniel Sierra-Sosa, Soham Pal, and Michael Telahun.
Data rotation and its influence on quantum encod-
ing. Quantum Information Processing, 22(1):89, Jan-
uary 2023.

[49] J. Spall. An Overview of the Simultaneous Perturbation
Method for Efficient Optimization. Johns Hopkins Apl
Technical Digest, 19(4):482–492, 1998.

[50] Hatma Suryotrisongko and Yasuo Musashi. Hybrid
Quantum Deep Learning and Variational Quantum
Classifier-Based Model for Botnet DGA Attack Detec-
tion. International Journal of Intelligent Engineering
and Systems, 15(3):215–224, June 2022.

[51] Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay Bash-
lykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhos-
ale, Dan Bikel, Lukas Blecher, Cristian Canton Fer-
rer, Moya Chen, Guillem Cucurull, David Esiobu, Jude
Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cyn-
thia Gao, Vedanuj Goswami, Naman Goyal, Anthony
Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan,
Marcin Kardas, Viktor Kerkez, Madian Khabsa, Is-
abel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein,
Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan
Silva, Eric Michael Smith, Ranjan Subramanian, Xi-
aoqing Ellen Tan, Binh Tang, Ross Taylor, Adina
Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan,
Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kam-
badur, Sharan Narang, Aurelien Rodriguez, Robert
Stojnic, Sergey Edunov, and Thomas Scialom. Llama
2: Open foundation and fine-tuned chat models, 2023.

[52] Guillaume Verdon, Michael Broughton, Jarrod R. Mc-
Clean, Kevin J. Sung, Ryan Babbush, Zhang Jiang,
Hartmut Neven, and Masoud Mohseni. Learning to
learn with quantum neural networks via classical neu-
ral networks, 2019.

[53] Samson Wang, Enrico Fontana, M. Cerezo, Kunal
Sharma, Akira Sone, Lukasz Cincio, and Patrick J.
Coles. Noise-induced barren plateaus in varia-
tional quantum algorithms. Nature Communications,
12(1):6961, Nov 2021.

18

[54] Roeland Wiersema, Cunlu Zhou, Yvette de Sereville,
Juan Felipe Carrasquilla, Yong Baek Kim, and Henry
Yuen. Exploring entanglement and optimization within
the hamiltonian variational ansatz. PRX Quantum,
1:020319, Dec 2020.

[55] Madita Willsch, Dennis Willsch, Fengping Jin, Hans
De Raedt, and Kristel Michielsen. Benchmarking the
quantum approximate optimization algorithm. Quan-
tum Information Processing, 19(7):197, Jun 2020.

[56] Kaining Zhang, Liu Liu, Min-Hsiu Hsieh, and Dacheng
Tao. Escaping from the barren plateau via gaussian
initializations in deep variational quantum circuits. In
S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave,
K. Cho, and A. Oh, editors, Advances in Neural Infor-
mation Processing Systems, volume 35, pages 18612–
18627, New Orleans, LA, USA, 2022. Curran Asso-
ciates, Inc.

[57] Leo Zhou, Sheng-Tao Wang, Soonwon Choi, Hannes
Pichler, and Mikhail D. Lukin. Quantum approximate
optimization algorithm: Performance, mechanism, and
implementation on near-term devices. Phys. Rev. X,
10:021067, Jun 2020.

Appendix

In the following, we will elaborate further on the results
of the significance tests we conducted. Red/green means
that the row is significantly worse/better than the column.
yellow denotes no significant differences and the values are
the p-values, rounded to the fourth decimal.

Initialization

Table 7 shows the comparison of the three main initializa-
tion strategies we tested. We want to highlight that beta
initialization was significantly better in all experiments con-
ducted than all other strategies. Furthermore, we find signif-
icant differences between normal and uniform initialization
in only one setting.

Preprocessing

Table 8 compares the two preprocessing techniques. In par-
ticular, we would like to highlight that classical preprocess-

ing, in our experiments, has a significant impact on the
results. We find significant differences in all experiments,
and the results always hold for the noisy and noiseless ex-
periments. This suggests that the dataset is an important
factor.

Feature Map Entanglement

Table 9 compares the feature map entanglement. We do
not find patterns that are ever-present, however, full entan-
glement is never significantly better than any other entan-
glement strategy and is often outperformed. This stands
in contrast to linear and pairwise entanglement, which are
both never outperformed by any other strategy.

Ansatz Entanglement

Table 10 compares the ansatz entanglement strategies. In-
terestingly, we see the tendency of full entanglement being
worse than others from the feature map entanglement re-
versed, i.e., it is either significantly better or not different
from others. Furthermore, sca entanglement never provided
any advantages in our experiments.

19

Beta Normal Uniform
K C G R K C G R K C G R

Beta
P 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
N 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Normal
P 0.0000 0.0000 0.0000 0.0000 0.3375 0.2777 0.3385 0.4354
N 0.0000 0.0000 0.0000 0.0000 0.0000 0.5102 0.6722 0.4412

Uniform
P 0.0000 0.0000 0.0000 0.0000 0.3375 0.2777 0.3385 0.4354
N 0.0000 0.0000 0.0000 0.0000 0.0000 0.5102 0.6722 0.4412

Table 7: Initialization: Significance Tests

LDA PCA
K C G K C G

LDA
P 0.0000 0.0000 0.0008
N 0.0000 0.0000 0.0000

PCA
P 0.0000 0.0000 0.0008
N 0.0000 0.0000 0.0000

Table 8: Preprocessing: Significance Tests

circular full linear
K C G R K C G R K C G R

circular P 0.0001 0.018 0.2119 0.7301 0.1493 0.0000 0.4048 0.5988
N 0.0000 0.5443 0.2441 0.1297 0.1537 0.0000 0.4214 0.8146

full P 0.0001 0.018 0.2119 0.7301 0.0000 0.0000 0.0033 0.5714
N 0.0000 0.5443 0.2441 0.1297 0.0000 0.0000 0.6002 0.1949

linear P 0.1493 0.0000 0.4048 0.5988 0.0000 0.0000 0.0033 0.5714
N 0.1537 0.0000 0.4214 0.8146 0.0000 0.0000 0.6002 0.1949

pairwise P 0.0503 0.0000 0.9165 0.1658 0.0000 0.0000 0.1663 0.4471 0.7099 0.2139 0.4942 0.456
N 0.5574 0.0000 0.4476 0.7883 0.0000 0.0000 0.8776 0.229 0.8585 0.792 0.7253 0.3521

sca P 0.7064 0.3664 0.422 0.6358 0.0001 0.0012 0.3264 0.8701 0.2298 0.0000 0.1139 0.5581
N 0.3778 0.4753 0.3436 0.8693 0.0000 0.1038 0.4568 0.0642 0.023 0.0001 0.8478 0.8006

pairwise sca
circular P 0.0503 0.0000 0.9165 0.1658 0.7064 0.3664 0.422 0.6358

N 0.5574 0.0000 0.4476 0.7883 0.3778 0.4753 0.3436 0.8693
full P 0.0000 0.0000 0.1663 0.4471 0.0001 0.0012 0.3264 0.8701

N 0.0000 0.0000 0.8776 0.229 0.0000 0.1038 0.4568 0.0642
linear P 0.7099 0.2139 0.4942 0.456 0.2298 0.0000 0.1139 0.5581

N 0.8585 0.792 0.7253 0.3521 0.023 0.0001 0.8478 0.8006
pairwise P 0.0093 0.0000 0.3395 0.3111

N 0.2028 0.0001 0.7977 0.8099
sca P 0.0093 0.0000 0.3395 0.3111

N 0.2028 0.0001 0.7977 0.8099

Table 9: Feature Map Entanglement: Significance Tests

20

circular full linear
K C G R K C G R K C G R

circular
P 0.7625 0.1441 0.0594 0.0042 0.9804 0.7872 0.0623 0.2437
N 0.9271 0.2133 0.6949 0.0000 0.4918 0.3285 0.5024 0.0085

full
P 0.7625 0.1441 0.0594 0.0042 0.8075 0.0922 0.8753 0.1513
N 0.9271 0.2133 0.6949 0.0000 0.4153 0.0143 0.291 0.0243

linear
P 0.9804 0.7872 0.0623 0.2437 0.8075 0.0922 0.8753 0.1513
N 0.4918 0.3285 0.5024 0.0085 0.4153 0.0143 0.291 0.0243

pairwise
P 0.9681 0.1016 0.5506 0.3223 0.7946 0.5155 0.3938 0.2417 0.9266 0.0746 0.4108 0.9789
N 0.7013 0.0964 0.8638 0.0571 0.6871 0.3874 0.8669 0.3273 0.842 0.0131 0.5402 0.6781

sca
P 0.3545 0.4493 0.2169 0.6482 0.2225 0.4811 0.0006 0.0011 0.3923 0.3062 0.001 0.101
N 0.3656 0.5908 0.0017 0.1153 0.315 0.0654 0.0003 0.0022 0.8758 0.6311 0.0073 0.3553

pairwise sca

circular
P 0.9681 0.1016 0.5506 0.3223 0.3545 0.4493 0.2169 0.6482
N 0.7013 0.0964 0.8638 0.0571 0.3656 0.5908 0.0017 0.1153

full
P 0.7946 0.5155 0.3938 0.2417 0.2225 0.4811 0.0006 0.0011
N 0.6871 0.3874 0.8669 0.3273 0.315 0.0654 0.0003 0.0022

linear
P 0.9266 0.0746 0.4108 0.9789 0.3923 0.3062 0.001 0.101
N 0.842 0.0131 0.5402 0.6781 0.8758 0.6311 0.0073 0.3553

pairwise
P 0.5738 0.259 0.1396 0.1724
N 0.7987 0.0226 0.0137 0.356

sca P 0.5738 0.259 0.1396 0.1724
N 0.7987 0.0226 0.0137 0.356

Table 10: Ansatz Entanglement: Significance Tests

21

	Introduction
	Background
	Quantum Information Theory
	Quantum Machine Learning
	Related Work

	Methodology
	Data
	Optimizers
	Ansatzes
	Circuit Structure
	Qubit Entanglement

	Encoding

	Experimental Setup
	Hardware Specifications
	Experiments

	Results
	Overview
	Initialization
	Optimizer
	Ansatz
	Ansatz Entanglement
	Feature Map
	Feature Map Entanglement
	Preprocessing
	Further Analysis

	Discussion
	Threats to Validity

	Conclusion and Future Work

