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Abstract. In recent years, Edge AI has become more prevalent with
applications across various industries, from environmental monitoring
to smart city management. Edge AI facilitates the processing of Inter-
net of Things (IoT) data and provides privacy-enabled and latency-
sensitive services to application users using Machine Learning (ML) algo-
rithms, e.g., Time Series Classification (TSC). However, existing TSC
algorithms require access to full raw data and demand substantial com-
puting resources to train and use them effectively in runtime. This makes
them impractical for deployment in resource-constrained Edge environ-
ments. To address this, in this paper, we propose an Adaptive Brownian
Bridge-based Symbolic Aggregation Vector Space Model (ABBA-VSM).
It is a new TSC model designed for classification services on Edge. Here,
we first adaptively compress the raw time series into symbolic representa-
tions, thus capturing the changing trends of data. Subsequently, we train
the classification model directly on these symbols. ABBA-VSM reduces
communication data between IoT and Edge devices, as well as computa-
tion cycles, in the development of resource-efficient TSC services on Edge.
We evaluate our solution with extensive experiments using datasets from
the UCR time series classification archive. The results demonstrate that
the ABBA-VSM achieves up to 80% compression ratio and 90–100%
accuracy for binary classification. Whereas, for non-binary classification,
it achieves an average compression ratio of 60% and accuracy ranging
from 60–80%.

Keywords: Edge Computing · EdgeAI · Time Series Classification ·
Data Compression · Symbolic Representation

1 Introduction

The number of Internet of Things (IoT) devices worldwide is anticipated to
experience a significant increase, nearly doubling from 15.9 billion in 2023 to
over 32.1 billion by 2030, according to data from Statista (2023). They produce
a massive amount of data, and it is expected to reach around 85 zettabytes
(ZB) by 2025 [1,2,23]. All these are driven by the widespread utilization of IoT
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technology and services across various industries, from environmental monitor-
ing [22] to smart city management [10]. Many of the IoT applications leverage
Machine Learning (ML) algorithms in their pipeline to provide data-driven smart
services. Traditionally, IoT data has been transmitted to, stored, and processed
in the cloud [21]. However, the growing demand for latency-sensitive applica-
tion services and privacy requirements has introduced a new paradigm called
Edge AI. Edge AI provides limited computing resources to design and deploy
applications at the network Edge [8,15,16].

Among many ML algorithms, Time Series Classification (TSC) is a widely
applicable popular method that predicts a class label of a given Time Series
(TS). TSC has various real-world applications in many domains, such as smart
city management tasks [10], and environmental monitoring [22], among others.

The state-of-the-art TSC algorithms primarily focus on accuracy, demon-
strating the capability to achieve high levels of accuracy across different datasets.
However, these algorithms face a challenge in classifying large datasets in
resource-constrained environments such as Edge. First, off-the-shelf TSC algo-
rithms require sending full raw data from IoT to Edge devices. This is infeasible
in the Edge environment since communication between IoT and Edge devices
is expensive, some studies have shown that communication costs up to 80% of
energy in IoT devices [2]. Moreover, Edge devices often have limited computing
and memory resources to process the raw data and train new TSC models [3].
Furthermore, data from many applications has to be processed in near real-
time [8]. Thus, it is necessary to develop a resource-efficient TSC method to
handle the growing volume of IoT data generated and to manage Edge applica-
tions efficiently.

In response to these challenges, various strategies have been proposed to opti-
mize the data processing at Edge [3,7,8]. For instance, in [3], authors propose
data compression at the IoT level and train the ML model on reconstructed
data at the Edge. While such a method solves the problem of high data traf-
fic between IoT and Edge, Edge’s memory and computation constraints remain
challenging. Consequently, Symbolic Representation (SR) [11,12] methods offer
an alternative approach to reduce the data size of numerical time series data and
perform analytics on reduced data. The SR is a lossy data compression technique
that partitions raw data into segments (chunks) and encodes them by symbols,
creating a string of symbols. If required, symbols could be reconstructed back to
the original time series with a controllable error rate. Contrary to classical com-
pression methods, SR preserves data semantics, allowing us to do data analytics
directly on symbols.

In this work, we explore how we can leverage SR to develop a time series
classification model that is directly trained on symbols. While some works [20]
have explored symbolic methods for TSC using SAX-VSM, such approaches do
not apply to adaptive (streaming IoT data) compression and latency-constrained
applications. Our approach is feasible in an environment where IoT devices can
compress the data and transfer the reduced data to the Edge, thus reducing
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communication and storage costs between IoT and Edge, and processing costs
at the Edge.

Therefore, we propose ABBA-VSM (Adaptive Brownian Bridge-based sym-
bolic Aggregation Vector Space Model), an adaptive approach for TSC using SR.
It consists of two main components: compression and classification. We first
present the adaptive time series compression inspired by the Brownian bridge
to reduce the size of the raw TS [6], followed by encoding the compressed data
as a string of symbols. Second, the Vector Space Model (VSM) is constructed
to build a TSC model. Finally, the ABBA-VSM outputs the TSC model trained
to classify the next set of data points. Our approach is adaptive to the non-
stationary data, dynamically adapts to create accurate symbols, and provides
an algorithm for TSC, which is directly trained on symbols.

In summary, the key contributions of the paper are:

– We propose a new adaptive symbolic time series classification model for
latency-constrained Edge applications, exploring its impact on memory and
computation constraints.

– We empirically evaluate the proposed method on real-world datasets and
compare it to non-adaptive baseline approaches.

– Our extensive experiments demonstrate that ABBA-VSM achieves 90–100%
accuracy for binary classification datasets and achieves reasonable accuracy
for multi-class classification.

The rest of the paper is organized as follows. Section 2 provides an overview
of the existing symbolic TSC methods. Section 3 describes the real-world appli-
cation scenario. Section 4 explains the proposed ABBA-VSM method in detail.
Section 5 describes the experimental design and datasets used. Section 6 dis-
cusses the empirical results. Finally, Sect. 7 presents the concluding remarks and
potential future work.

2 Related Work

Multiple techniques exist for TS reduction and classification, but only a few are
designed to represent TS data symbolically. Here, we will provide an overview
of existing symbolic data compression methods and symbolic time series classi-
fication algorithms, which are summarized in Table 1.

Table 1. Comparison of most relevant works that use
symbolic representation for TS classification

Algorithm Adaptive
reduction

Symbol
generation

Classification
on the Edge

SAX-VSM [20] × � ×
BOSS [17] × � ×
WEASEL [19] × � ×
MrSQM [13] × � ×
ABBA-VSM � � �

The TSC techniques can
be broadly categorized into
two groups: full time series-
based methods and feature-
based methods [9]. Full time
series-based methods use a
pointwise comparison of TS,
for instance, with 1-NN
Euclidean Distance (ED) or
1-NN Dynamic Time Warp-
ing (DTW). While these techniques are well suited for short TS, they are ineffi-
cient for long and noisy TS. Whereas feature-based techniques compare features
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or segments generated from full TS. The common approach within this feature-
based group is the Bag-Of-Patterns (BOP) model [9]. Such models are built by
breaking up a TS into segments representing discrete features, creating a bag of
words from these features, and finally, building a histogram of feature counts as
a basis for classification.

Most BOP models employ Symbolic Aggregate Approximation (SAX) and
Symbolic Fourier Approximation (SFA), which are commonly used methods for
creating linear segments from TS [9,14]. SAX partitions TS into segments of
fixed length and then represents each segment by the mean of its values (i.e., a
piece-wise constant approximation). In contrast, SFA converts TS into symbolic
representations using Fourier coefficients [18].

The Bag of Symbolic Fourier Approximation Symbols (BOSS) algorithm is
based on the SFA method, which involves approximating the original data using
the Discrete Fourier Transform and then discretizing the resulting coefficients
using a technique called Multiple Coefficient Binning [17]. Multiple Representa-
tions Sequence Miner (MrSQM) offers four different feature selection strategies,
including random feature selection, pruning the all-subsequence feature space,
and random sampling of features [13]. Word ExtrAction for time SEries cLassifi-
cation (WEASEL) is a TSC method that creates a large SFA words feature space,
filters it with Chi-square feature selection, then trains a logistic regression clas-
sifier [19]. Symbolic Aggregate Approximation Vector Space Model (SAX-VSM)
is a TSC method that creates a feature space of SAX words and then builds a
classifier by building the weight matrix of SAX words [20].

While these methods showcase the diversity in feature extraction and sym-
bolic classification techniques for TS, they often fail to capture the changing
trends in the data during real-time TS compression.

3 System Model

Fig. 1. A high-level view of our system model

In this section, we provide
a high-level overview of our
approach, ABBA-VSM, as
depicted in Fig. 1. ABBA-
VSM has two main compo-
nents, a compressor and a
classifier. The compressor
(e.g., IoT device) adaptively
reduces TS up to linear seg-
ments (1) and transfers the

resulting segments to Edge. The classifier (e.g., Edge device), receives the trans-
mitted data, encodes the linear segments as a string of symbols (2), and by
applying the sliding window technique, it creates a bag of words (3), which we
call as ABBA words, and finally, it builds a classifier model to predict labels (4).



42 M. Kanatbekova et al.

Compressor: Let us consider IoT devices as compressors. The IoT device
sources a TS, denoted as

T = [(x1, y1), ..., (xN , yN )] (1)

where xi and yi are values and timestamps, respectively. Then, it reduces the TS
by creating a polygonal chain of linear pieces, where each piece is bounded by the
timestamp length and squared Euclidean distance error, according to the com-
pression step in ABBA [6]. These linear pieces are defined as P = [p1, p2, ..., pn],
where each linear piece pj = (lenj , incj) is a tuple of time step length and incre-
ment value, and with n ≤ N . For simplicity, from now on we will refer to these
linear pieces as segments. To mitigate misclassification issues, the compressor
waits until all segments corresponding to a particular class are generated before
sending a collection of segments to the classifier. By creating such segments, the
raw data T is converted into highly compressed data in the form of segments P .

Classifier: The classifier receives the segments P = [p1, p2, ..., pn] and clusters
them to centers C = [c1, c2, ..., ck] with k ≤ n [6]. Then, each cluster is symbol-
ized using the alphabet A = [a1, a2, ..., ak]; thus, segments corresponding to the
same cluster receive the same character as the cluster. Once we get the string
of symbols representing the TS, we apply the windowing technique to create a
bag of words. Unlike traditional windowing methods that apply a sliding window
to the original TS [17], this paper proposes the application of a sliding win-
dow on compressed data, i.e., on a string of symbols. This approach facilitates
the compression of raw TS at IoT without being influenced by sliding window
characteristics (size and step). Then, we apply distance measure techniques to
classify the labels of these bags of words.

4 Methodology

We have provided a high-level description of the proposed symbolic TSC in
Sect. 3. Here, we present detailed methodologies for constructing ABBA-VSM,
consisting of the two main parts: compressor and classifier. For compressor,
we use the Adaptive Brownian Bridge Aggregation (ABBA) technique, a continu-
ous-time stochastic process that restricts Brownian motion to trajectories and
converges to a given terminal state, enabling efficient data compression appli-
cations [6]. By adaptively reducing the TS to linear segments, ABBA method
demonstrates the ability to preserve the shape characteristics of TS better than
other approaches like SAX and 1d-SAX representations. The key insight is that
the segments can be modeled as a random walk with pinned start and end points,
resembling a Brownian bridge. This allows for creating parameter-free (namely
adaptive) segments except for the choice of a reduction tolerance. Once the TS is
reduced to segments, we transfer them to the Edge and encode them as a string
of symbols.

For classifier, we construct a Vector Space Model (VSM) using the string
of symbols. VSM is a model that represents TS (in our case, symbolized TS)
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Algorithm 1. ABBA-VSM Training
1: procedure ABBA-VSM Training(training data, RT, C_type, W_size,

W_step)
2: corpus ← empty_list
3: while True do
4: sample ← get_data_from(training data)
5: segments ← reduction(sample, RT)
6: string ← cluster(segments, C_type)
7: windowed_string ← window(string, W_size, W_step)
8: ABBA_words ← create_bag_of_words(W_string)
9: labelled_ABBA_words ← label_words_by_class(ABBA_words)

10: append labelled_ABBA_words to corpus
11: end while
12: training_weight_matrix ← apply_tf_idf_vectorizer(corpus)
13: end procedure

Algorithm 2. ABBA-VSM Testing
1: procedure ABBA-VSM Testing(unlabeled data, RT, C_type, W_size,

W_step)
2: segments ← reduction(unlabeled data, RT)
3: string ← cluster(segments, C_type)
4: windowed_string ← window(string, W_size, W_step)
5: ABBA_words ← create_bag_of_words(W_string)
6: testing_weights ← apply_tf_idf_vectorizer(words)
7: class_label ← cosine_similarity(training_weights, testing_weights)
8: end procedure

as vectors in a multi-dimensional space. A VSM allows efficient similarity com-
parisons, from which a classification algorithm can be developed. Unlike clas-
sical Machine Learning models, which often require extensive training on large
datasets (mainly on original TS) and involve significant computational power
and memory, operations performed in VSM, such as similarity measurement,
require fewer computational resources. A step-by-step description of methodol-
ogy is described below and implemented in Algorithms 1 and 2.

4.1 Compressor: Transforming Numerical Time Series Into
Segments

A time series compression method at IoT level involves a single step: reduce.
Reduce: We start by considering the time series T in line 5 of Algorithm 1.
Then, ABBA adaptively partitions T into n segments P with n < N in line 5
Algorithm 1. Each segment in P consists of two values, the length of the time
steps of each segment as leni := xi − xi−1 ≥ 1 and increment in value as
inci := yi − yi−1. The reduced time series is defined as follows,

T̃ = [(len1, inc1), ..., (lenn, incn)] ∈ R
2×n (2)
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The method is an adaptive compression as the Euclidean distance between T and
T̃ is bounded by a user-defined reduction tolerance (RT ) value [6]. Reducing raw
TS into segments helps reduce the communication cost between IoT and Edge.
It is important to note that we choose to create segments (P ) on the IoT device
and generate symbols on the Edge device. This distribution of computational
tasks is necessary because symbols are needed at the Edge device, and creating
symbols from segments (P ) requires running a clustering algorithm for all new
segments generated, which might be computationally infeasible for many IoT
devices. Nevertheless, segments are already highly compressed TS, significantly
reducing the communication costs between the IoT and Edge devices.

4.2 Classifier: A Symbolic Approach

The computational complexity of ABBA compression is O(N) where N is the
number of data points in T . While clustering operations are relatively efficient
for Edge environments, they can be computationally intensive for resource-
constrained IoT devices. Thus, clustering followed by symbolization and then
the construction of training and testing are performed at classifier part of
ABBA-VSM on the Edge.

Symbolize: Similar tuples from T̃ in Eq. 2 form clusters, each encoded as a
single character, allowing all segments that belong to the same cluster to be
assigned one symbol in line 6 of Algorithm 1. For this, tuple values (leni, inci) are
separately normalized by their standard deviations σlength and σinc, respectively.
Based on the empirical observations we conducted, the classification accuracy
error between various clustering methods was negligible. Thus, for final empirical
evaluation, we consider a sorting-based [4] and the k-means algorithm. K-means
clustering requires the number of clusters to be known beforehand, whereas the
sorting-based method is adaptive, using the user-defined clustering tolerance
CT [4].

Finally, each tuple in the sequence T̃ in Eq. 2 is replaced by the symbol of
the cluster it belongs to, resulting in the string of symbols S = [s1s2...sn] ∈ An.

ABBA-VSM Training: To create ABBA words from a string of symbols in
S, we apply the sliding window technique as shown in line 7 of Algorithm 1.
Compared to the traditional sliding window technique that is applied on time
series before the compression, we propose to use the sliding window on sym-
bolically compressed TS, i.e., on the string of symbols. Such a technique allows
the adaptive compression of the original TS, forming Brownian bridges, without
being affected by the sliding window dimensions. The sliding window dimensions
can be pre-defined by the user. A term corresponding to one window defines a
single ABBA word, a collection of ABBA words from one training sample forms
a labeled bag of words in line 9. Then, a set of bags form corpus in line 10. Once
all samples in training data are encoded as bags of ABBA words, we group the
labeled words to corresponding class labels and create a weight matrix. This
matrix defines the weights of all words in a corpus and is built as follows:
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(a) Representation: Let di, D be a document that represents an individual
class and a corpus, respectively.

(b) Term Frequency(TF): For each word tj in document di, the TFij is the
number of times tj appears in di, i.e.,

TFij =
number of times tj appears in di

total number of terms in di

(c) Inverse Document Frequency (IDF): The IDFj quantifies a word’s impor-
tance by calculating the logarithmic ratio of the total number of documents |D|
to the number of documents that include the term tj .

IDFj = log(
|D|

number of documents containing tj
)

(d) TF-IDF : By taking the product of TFij and IDFj , we calculate the
importance of term tj in document di as Wij = TFij ∗ IDFj .

(e) Vector Representation: Now each document di can be represented as
vector vi = (Wi1 ,Wi2 , ...,Wi|T |). The rows are individual ABBA words in the
weight matrix (line 12 of Algorithm 1), and columns represent the class labels.
Testing: To classify an unlabeled TS, ABBA-VSM transforms it into a frequency
vector w using the same steps that were used for training lines 2-6 of Algorithm 2.
Then, it computes cosine similarity values between frequency vector w and vi,
with i representing weight vectors for different class labels:

similarity(w, vi) =
w · vi

‖w‖ · ‖vi‖
The unlabeled TS is assigned to the class label whose vector has the highest
cosine similarity value (line 7 in Algorithm 2).

Fig. 2. Building ABBA-VSM with training time series dataset and testing on unlabeled
data.
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To further illustrate the whole process of symbolic classification, we provide a
visual representation of the ABBA-VSM in Fig. 2. As depicted, during the train-
ing phase, each TS sample is reduced and segmented by the ABBA method, with
each segment being symbolized as a character to construct a string of symbols
corresponding to the TS. Subsequently, this string of symbols is windowed to
generate a bag of ABBA words. To build a classification model, the TF − IDF
approach is applied to each ABBA word, resulting in a weight matrix where
rows represent individual ABBA words and columns denote class labels. For the
classification of unlabeled samples, a similar technique is employed. A bag of
ABBA words is built for a new sample, which is then transformed into a fre-
quency vector. This vector is compared using cosine similarity to determine the
class label.

5 Performance Evaluation

In this section, we evaluate the performance of our proposed ABBA-VSM, a time
series classification algorithm based on approximating time series into symbols.
We perform a range of experiments to assess its performance and to gain insights
into both compression and classification results.

5.1 Metrics

We present an evaluation framework for the ABBA-VSM algorithm. This frame-
work encompasses a dual approach, incorporating both compression-based and
classification-based metrics to assess the algorithm’s performance across differ-
ent dimensions. For compression-based metrics, we focus on quantifying the effi-
ciency of the compression algorithm. First, the compression ratio (CR) mea-
sures the data reduction ratio achieved by the algorithm. A higher compression
ratio implies more efficient compression, requiring less storage and providing
potentially faster processing times. More formally,

CR = 1 − Size of compressed data

Size of original data

To overcome the complexity of storage measure in Python, we used a similar
approach as in [7] by assuming that the size of the original data is the length of
the uncompressed float value multiplied by 4 (4 bytes to store numerical value),
and the size of compressed data is the length of the compressed string (assuming
1 byte to store symbols/character).

Conversely, for classification-based metrics, we focus on determining the algo-
rithm’s effectiveness in achieving classification accuracy (Acc) with com-
pressed data. A higher accuracy score signifies the algorithm’s capability to
maintain classification performance even with compressed data. Accuracy is cal-
culated as:

Acc =
Number of correctly classified samples

Total number of samples
× 100%
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5.2 Hyper-Parameter Selection

Table 2. Hyperparameters and search space
considered in the evaluation.
Param. Search Space
RT {0.001, 0.005, 0.01, 0.05, 0.1, 0.3, 0.5, 0.7}
Ctype {k_means, sorting_based}
CT {0.001, 0.005, 0.01, 0.05, 0.1, 0.3, 0.5, 0.7}
Wsize {2,3,4,5,6,7,8,9,10}
Wstep {1,2,3,4}
Csize {2,3,4,5,6,7,8}
Tsize {0.05, 0.1, 0.2, 0.3, 0.4}

We conducted an exhaustive exper-
iment involving multiple hyperpa-
rameters, each playing a crucial
role in shaping the performance
of our classification model. These
hyperparameters include reduction
tolerance (RT), which establishes
the threshold for considering data
changes insignificant during com-
pression; cluster type (Ctype), defin-
ing the clustering method for symbolic representation; clustering tolerance (CT),
defining the dimension of cluster in sorting-based ABBA clustering; word size
(Wsize), determining the length of ABBA words; window step (Wstep), specify-
ing the stride for moving the sliding window along the compressed data; cluster
size (Csize), utilized in k-means based ABBA; and train-test split (Tsize), gov-
erning the proportion of samples allocated for model training and testing. Our
study meticulously investigates the influence of these hyperparameter config-
urations on classification accuracy, with the ultimate goal of pinpointing the
combination that optimally enhances accuracy. To ensure thorough exploration
while avoiding excessive complexity, we define a well-structured search space for
hyperparameters, encompassing a diverse range of values. This strategic selec-
tion of the search space strikes a balance between comprehensive exploration and
computational feasibility, ensuring that our analysis yields robust and meaning-
ful insights into the impact of hyperparameters on classification accuracy. Table 2
lists the search space for each hyperparameter.

5.3 Application Datasets

Table 3. Selected Time Series
Datasets from UCR archive.

Dataset # classes Shape
Adiac 37 (731,1,176)
Beef 5 (60,1,470)
CBF 3 (930,1,128)
Coffee 2 (56,1,286)
ECG200 2 (200,1,96)
Face All 14 (2250,1,131)
Face Four 4 (112,1,350)
Fish 7 (350,1,463)
Gun Point 2 (200,1,150)
Lightning2 2 (121,1,637)
Lightning7 7 (143,1,319)
OliveOil 4 (60,1,570)
OSU Leaf 6 (442,1,427)
Syn. Control 6 (600,1,60)
Swedish Leaf 15 (1125,1,128)
Trace 4 (200,1,275)
Two Patterns 4 (5000, 1,128)
Wafer 2 (7164,1,152)
Yoga 2 (3300,1,426)

In our study, we analyze a variety of datasets
from the UCR Time Series Classification
Archive [5]. These datasets are from different
domains, such as classifying unicellular algae,
examining beef spectrograms, and distin-
guishing between Robusta and Arabica cof-
fee beans. Each dataset has varying numbers
of classes, adding complexity to our analy-
sis. For example, the Beef dataset includes
five beef spectrograms, while the Fish dataset
covers seven fish types. Table 3 provides an
overview of 19 selected datasets used for
experiments. We selected similar datasets as
in [20] to establish a comparison baseline.
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5.4 Implementation

To implement ABBA-VSM, we extended the fABBA 1.2.1 framework [4] for the
compression part, with modifications as required.Next, ABBA-VSM training
and testing algorithms are implemented in Python and evaluated on an Intel(R)
Core(TM) i7-8550U CPU @ 1.80GHz machine. We emulate the compressor (IoT
device) and classifier (Edge device) locally on a single node.

6 Results and Discussion

In this section, we evaluate ABBA-VSM using the metrics defined in Section
5. In addition, we compare our result with baselines and perform sensitivity
analysis of hyperparameters.

6.1 Main Results

Fig. 3. The total runtime overhead at compressor
(IoT) and classifier (Edge) for each dataset.

Our primary focus is to build
the classification model using
compressed data, emphasizing
the need to achieve the best
classification accuracy while
maintaining a high compression
ratio. Figure 4 demonstrates
the change in compression ratio
with varying reduction toler-
ance. For both binary and mul-
ticlass classification datasets,
we observe the increase in com-
pression ratio with the increase
in reduction tolerance. The
average compression ratio for
binary classification datasets is
80–90%, whereas for multiclass,
it is 50–60%, shown in Figs. 4a
and 4b, respectively.

As depicted in Fig. 3, the runtime overhead of Edge is considerably lower com-
pared to IoT. This disparity can be attributed to the Edge operating on already
compressed time series (TS) data, while IoT processes the original uncompressed
TS.

Moreover, we compared the classification accuracy of our proposed ABBA-
VSM model against several state-of-the-art baseline classifiers in [20], such
as 1NN classifiers based on Euclidean distance and Dynamic Time Warping
(DTW), Fast-Shapelets pattern, Bag of Patterns (BoP) and SAX-VSM. 1NN
classifiers use Euclidean distance to provide a straightforward approach for clas-
sifying TS by measuring the closest neighbor in the feature space, while DTW
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Fig. 4. Average compression ratio with varying reduction tolerance. For binary classi-
fication datasets in (a) the compression ratio gradually increases with the increase of
reduction tolerance. In contrast, multiclass data in (b) compression ratio converges to
linear much faster.

additionally adapts to variations in TS length. Fast-Shapelets detect unique pat-
terns in TS, focusing on the most significant segments. In contrast, the BoP con-
verts TS into symbolic representations, which streamlines classification through
the analysis of pattern frequencies. Additionally, SAX-VSM integrates SAX with
VSM.

The Results Demonstrate That Our Model Outperforms All Base-
line Methods on Binary Classification Datasets. For instance, on binary
classification datasets such as ECG200, GunPoint, and Lightning2, ABBA-VSM
achieved the highest performance with an accuracy of 100%. In contrast, for Cof-
fee and Wafer datasets, it performed as well as SAX-VSM by showing 90–100%
accuracy. In multi-class classification scenarios, the accuracy varies depending
on the number of class labels; however, here, ABBA-VSM performed as well
as baselines, with the exception of the Face All dataset, where it recorded the
lowest accuracy at nearly 40%.

Table 4 summarizes and compares the classification accuracy against the
baselines given in [20]. In summary, our results demonstrate that ABBA-VSM is
suitable in IoT and Edge environments for the development of Edge AI services
utilizing classification services.

6.2 Sensitivity Analysis

We present the outcomes of exhaustive experiments with various hyperparame-
ters, each playing a crucial role in shaping the classification model’s performance.
To identify the relevant combination of hyperparameter values, we consider clas-
sification accuracy results above a threshold value of 80%.

Reduction Tolerance: An increase in reduction tolerance leads to a decrease
in the number of segments, consequently increasing the compression ratio and
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Table 4. Comparison of classification accuracy (in the range of [0, 1], with 1 indicating
100% accuracy) of ABBA-VSM against baselines from [20].

Dataset Type 1NN
Euclidian

1NN
DTW

Fast
Shapelets
Pattern

Bag
of
Patterns

SAX
VSM

ABBA-
VSM
sorting

ABBA-
VSM
k-means

Adiac multi 0.61 0.61 0.49 0.57 0.62 0.5 0.45
Beef multi 0.53 0.53 0.55 0.57 0.97 1.00 1.00
CBF multi 0.85 1.00 0.95 0.99 1.00 0.79 0.7
Coffee binary 0.75 0.82 0.93 0.96 1.00 1.00 1.00
ECG200 binary 0.88 0.77 0.77 0.86 0.86 1.00 1.00
FaceAll multi 0.71 0.81 0.60 0.78 0.79 0.39 0.27
FaceFour multi 0.78 0.83 0.91 0.99 1.00 1.00 1.00
Fish multi 0.78 0.83 0.80 0.93 0.98 1.00 1.00
GunPoint binary 0.91 0.91 0.94 0.97 0.99 1.00 1.00
Lightning2 binary 0.75 0.87 0.70 0.84 0.80 1.00 0.90
Lightning7 multi 0.57 0.73 0.60 0.53 0.70 0.9 0.79
Olive Oil multi 0.87 0.87 0.79 0.77 0.9 0.86 0.8
OSU Leaf multi 0.52 0.59 0.64 0.76 0.89 0.7 0.6
Syn.Control multi 0.88 0.99 0.92 0.96 0.99 0.67 0.6
Swed.Leaf multi 0.79 0.79 0.73 0.80 0.75 0.7 0.7
Trace multi 0.76 1.00 1.00 1.00 1.00 1.00 1.00
Two Patterns multi 0.91 1.00 0.89 0.87 1.00 0.9 0.86
Wafer binary 0.99 0.98 1.00 1.00 1.00 0.99 0.9
Yoga binary 0.83 0.84 0.75 0.83 0.84 0.71 0.67

reducing the storage demand. This raises the question of whether ABBA-
VSM can achieve better classification accuracy with a higher compression ratio.
Among all sets of hyperparameter value combinations for binary classification,
the reduction tolerance value RT = 0.1 achieved the accuracy threshold more
frequently than the rest of the RT values. This is followed by tolerance ranges
of RT = {0.3, 0.5}. However, for multiclass datasets, the accuracy exceeding the
threshold is achieved with even higher tolerances, such as RT = {0.3, 0.5, 0.7},
and can be seen in Fig. 4. This evaluation shows us that RT can have a lower
bound at 0.3 to achieve the accuracy threshold.

Cluster Type: In the binary classification case, the sorting-based clustering
method outperformed k-means with an average accuracy improvement of 0.12,
as seen in Table 4. However, both methods showed similar performance when
dealing with multiclass datasets, with accuracy differences ranging only from
0.05 to 0.1. This suggests that the choice between sorting-based and k-means
clusterings depends on the dataset’s characteristics, especially on the number of
classes involved.

Test Size: Nearly 80% of datasets with more than 20% test size performed lower
than accuracy threshold. On the other hand, almost 90% of datasets with a test
size less than 10% showed accuracy between 80–100%. This indicates that our
method requires more data samples for training.
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Training and Test Time: We observed that sorting-based clustering outper-
formed k-means clustering across all datasets in terms of computational effi-
ciency. Specifically, when considering binary classification datasets, the k-means
algorithm exhibited a notable increase in training time, ranging from 1.5x-2x
more compared to sorting-based clustering. For multiclass datasets, k-means
required approximately 0.5x-0.7x times more time than sorting-based cluster-
ing. For example, the FaceAll data required an average training time of 7.5 s for
sorting-based clustering and 13.5 s for k-means-based clustering.

Window step and word size: For both binary and multiclass datasets, we
did not observe a significant classification accuracy change in different window
steps and word sizes. Thus, to reduce the computational time, larger values for
window step and word size, i.e., within the range {3, 4} and {7, 8, 9, 10}, can be
considered, respectively.

Clustering tolerance: This hyperparameter is active when using sorting-based
clustering selection. While half of the binary classification datasets achieved the
accuracy threshold with values between CT = {0.001, 0.005, 0.01, 0.05, 0.1}, the
remaining half achieved with CT = {0.1, 0.3, 0.5, 0.7}. In approximately 80% of
multiclass datasets, the accuracy threshold is not met. This discrepancy can be
attributed to the limited size of the training dataset, as indicated by experimental
findings.

7 Conclusion and Future Works

We proposed ABBA-VSM, a symbolic time series classification method designed
for resource-constrained Edge environments. Our proposed approach trains a
Vector Space Model (VSM) classification model on a bag of words (i.e., com-
pressed and symbolized time series data) and tests the model on unlabeled sym-
bolic data. ABBA-VSM demonstrates 90–100% classification accuracy on binary
classification datasets while achieving up to 80% compression ratio. In the future,
we plan to explore the ABBA-VSM model for multivariate time series.
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