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Abstract
Edge ML faces resource and energy constraints, requiring
optimized split computing, which partitions inference be-
tween edge and cloud. We propose a two-phase framework
combining offline optimization and dynamic scheduling. It
jointly configures split points and hardware settings to bal-
ance energy and latency.

1 Introduction
Edge computing provides resources at the network edge,
enabling latency-sensitive and privacy-aware applications
that often rely on Machine Learning (ML) models for predic-
tion and analytics [4]. This paradigm, known as Edge AI [1],
supports smart applications, but faces significant challenges
due to the resource and energy constraints of edge devices.
To address these challenges, edge applications can dis-

tribute tasks among edge nodes, user devices, and cloud
resources [9]. This method keeps latency-sensitive process-
ing at the edge, whilst utilizing the cloud’s scalability. When
employing neural networks (NNs) for inference tasks, their
layers can be split into multiple sections and executed across
edge and cloud based on current needs. This approach, known
as split computing [5], can enhance performance by optimiz-
ing the use of both edge and cloud strengths.
Effectively implementing split computing is challenging.

In fact, selecting split the best points is a complex task due
to nonlinear dependencies in the resulting latency and en-
ergy usage [3]. Additionally, dynamic runtime conditions in
edge environments further increase problem complexity [10].
Finally, both network conditions and hardware characteris-
tics (e.g., CPU tuning via dynamic voltage frequency scaling
(DVFS) and hardware accelerators) can significantly impact
latency and energy consumption [2, 8].

These factors, combined with the need to satisfy dynamic
Quality of Service (QoS) requirements, make jointly opti-
mizing split points and hardware configurations particularly
challenging. Addressing these complexities is crucial to en-
able energy-efficient inference in edge-cloud environments.

2 Proposed Approach
We propose a hardware-software co-design framework for
energy-efficient, latency-aware inference in a single edge-
cloud setup. It dynamically selects optimal split points and
hardware configurations like CPU frequencies and whether
to employ hardware accelerators. This method leverages

edge and cloud resources to meet QoS requirements and
reduce energy consumption.
Figure 1 illustrates the functionalities of the framework

organized in two phases. In the Offline Phase, we set up a
Multi-Objective Optimization Problem (MOOP) to reduce
latency and energy consumption while ensuring inference
accuracy. Then, a meta-heuristic optimization algorithm (i.e.,
NSGA-III) is used to identify a set of non-dominated config-
urations (i.e., Pareto front solutions). These configurations,
precomputed from empirical testing, offer suitable trade-offs
across a complex hardware-software parameter space.

During the Online Phase, the precomputed configurations
are applied dynamically as per incoming requests and QoS
needs. The system opts for the most energy-efficient configu-
ration that meets latency demands or, if needed, the quickest
one to minimize QoS breaches. This framework adeptly man-
ages varying workloads and network conditions by adjusting
edge and cloud parameters in real time.

This two-phase method effectively tackles the complexity
of dynamic NN inference in distributed settings. It merges
offline optimization with real-time adaptability, reducing
energy use, meeting latency needs, and offering a practical
solution for present-day edge-cloud inference.

3 Preliminary Results
We evaluated our framework using the VGG16 [7] neural
network, a widely used model for computer vision, on a
testbed employing a Raspberry Pi 4B, a Google Coral TPU,
and a cloud node equippedwith an NVIDIA Tesla V100 GPU1.
Energy consumption was measured using digital power me-
ters, ensuring more accurate results than estimation-based
approaches. We evaluated energy consumption and QoS vi-
olations for 50 requests, each consisting of 1,000 inference
tasks for reliable measurements. We modeled QoS latency
limits as an exponential distribution and compared the re-
sults with edge-only and cloud-only baselines.

Figure 2a displays QoS violations for the baselines and our
dynamic configuration approach, shown as violin plots with
density and quartiles, with 𝑛 indicating total violations. The
edge-only baseline has high violations, with 25% of requests
exceeding latency limits. The cloud-only baseline incurs one

1Experiments presented in this paper were carried out using the Grid’5000
testbed, supported by a scientific interest group hosted by Inria and includ-
ing CNRS, RENATER and several Universities as well as other organizations
(see https://www.grid5000.fr).
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Figure 1. An overview of the proposed framework.
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Figure 2. Preliminary results for VGG16.

violation. Our dynamic method reduces the violation rate to
4%, with a median exceedance of 10 ms, sustaining QoS.

Figure 2b shows the results of the combined energy con-
sumption of the edge and the cloud. The cloud-only method
uses the most energy (median 68 J), while the edge-only
method is much more efficient (median <3 J). Our dynamic
approach also has a median energy use of <3 J and adapts to
QoS, sometimes using up to 72 J.
Summary and Conclusion: Our preliminary results show
the potential of dynamic split computing to balance latency
and energy efficiency while adapting to variations in work-
load. Compared to edge-only execution, our approach signif-
icantly reduces QoS violations while consuming less energy
than cloud-only computation. These findings highlight the
need for more experiments to study the full impact of edge-
cloud inference, which we already have started including in
a pre-print available on arXiv [6].
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