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Motivation & Challenges

Motivation
* Edge ML enables privacy-aware, low-latency apps !
* Split computing enables joint use of edge proximity and cloud
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Challenges

* Selecting optimal split points is non-trivial 2

e Latency—energy trade-offs are hardware-dependent % ©!

e Dynamic network conditions complicate runtime decisions "]
* Varying QoS targets must be met reliably
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Framework Overview

* A hardware-software co-design framework for splitting ML
inference across edge and cloud

* Offline phase: Multi-objective optimization to explore latency—
energy trade-offs

* Online phase: Runtime selection of optimal configuration based
on QoS requirements

Jointly tunes parameters:

e Split layer: Placement of neural network boundary

* CPU frequency: Dynamic voltage and frequency scaling (DVFS)
* Accelerator usage: Enable/disable TPU or GPU

* Accelerator frequency: Select optimal clock speeds for TPU

Proposed Framework
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Preliminary Results

* Model: VGG16 (image classification)

* Devices: Raspberry Pi 4B + Coral TPU (edge), Tesla V100 (cloud)
 Workload: 50x1,000 inferences with QoS latency targets
 Energy: Measured via power meters

 Baselines: Cloud-only and edge-only vs. our dynamic method
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This poster has been designed using images from Flaticon.com. Experiments presented in this poster were carried out using the Grid’5000 testbed,
supported by a scientific interest group hosted by Inria and including CNRS, RENATER and several Universities as well as other organizations (see
https://www.grid5000.fr) This work was supported by a netidee scholarship. This research has been partially funded through the projects: Transprecise Edge
Computing (Triton), Austrian Science Fund (FWF), DOI: 10.55776/ P36870; Trustworthy and Sustainable Code Offloading (Themis), FWF, DOI: 10.55776/
PAT1668223; Satellite-based Monitoring of Livestock in the Alpine Region (Virtual Shepherd), Austrian Research Promotion Agency (FFG), Austrian Space
Applications Programme (ASAP) 2022 # 5307925; Digital Twin for LoORaWAN Agriculture Systems, Steirische Wirtschaftsforderung (SFG), Ideen!Reich XS
1.000.073.260.
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 QOur dynamic approach reduces QoS violations compared to
edge-only execution

* |t also consumes less energy than inference fully on the cloud

 The system adapts to varying workloads and network dynamics

* Results show the promise of hardware-software co-design for
edge-cloud ML

Extended results available in our preprint !
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