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Towards Energy-Efficient Split Computing
A Hardware-Software Co-Design Perspective

Proposed Framework
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Motivation & Challenges

Motivation
• Edge ML enables privacy-aware, low-latency apps [3]

• Split computing enables joint use of edge proximity and cloud 
compute power [4]

Challenges
• Selecting optimal split points is non-trivial [2]

• Latency–energy trade-offs are hardware-dependent [1, 6]

• Dynamic network conditions complicate runtime decisions [7]

• Varying QoS targets must be met reliably
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Preliminary Results

• Model: VGG16 (image classification)
• Devices: Raspberry Pi 4B + Coral TPU (edge), Tesla V100 (cloud)
• Workload: 50×1,000 inferences with QoS latency targets
• Energy: Measured via power meters
• Baselines: Cloud-only and edge-only vs. our dynamic method

Energy ConsumptionQoS Violations

Discussion

• Our dynamic approach reduces QoS violations compared to 
edge-only execution

• It also consumes less energy than inference fully on the cloud
• The system adapts to varying workloads and network dynamics
• Results show the promise of hardware-software co-design for 

edge-cloud ML

Extended results available in our preprint [5]

Contribution

Framework Overview
• A hardware-software co-design framework for splitting ML 

inference across edge and cloud
• Offline phase: Multi-objective optimization to explore latency–

energy trade-offs
• Online phase: Runtime selection of optimal configuration based 

on QoS requirements

Jointly tunes parameters:
• Split layer: Placement of neural network boundary
• CPU frequency: Dynamic voltage and frequency scaling (DVFS)
• Accelerator usage: Enable/disable TPU or GPU  
• Accelerator frequency: Select optimal clock speeds for TPU
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Applications Programme (ASAP) 2022 # 5307925; Digital Twin for LoRaWAN Agriculture Systems, Steirische Wirtschaftsförderung (SFG), Ideen!Reich XS 
1.000.073.260.
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