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Abstract—Performing near real-time data analytics at the edge
requires dealing with issues such as the rapidly growing amount
of data, limited resource capacities, and high failure probabilities
of edge nodes. To meet SLOs such as service availability, failure
resilience, or workload balancing, data replication is of vital
importance in this context. Consequently, specific input datasets,
requested by on-demand analytics (e.g., object detection), can be
present at different locations over time. This can prevent users
from exploiting data locality and timely performing decision-
making processes. State-of-the-art solutions in the placement of
on-demand data analytics at the edge either fail in providing low-
latency access to user-requested input data or do not consider
data locality. We propose SEA-LEAP (Self-adaptive and Locality-
aware Edge Analytics Placement), a framework including a new
mechanism for tracking data movements, on top of which we
devise a generic control mechanism. SEA-LEAP enables on-the-
fly placement of on-demand analytics applications considering
the most appropriate dataset location that minimizes overall
analytics requests execution time. We conduct experiments using
real-world (i) object detection application, (ii) image datasets as
input for the application, (iii) obtained benchmarks, and (iv) het-
erogeneous edge infrastructure using Kubernetes. Experimental
results show the ability to efficiently deploy on-demand analytics,
and by featuring adaptive data movements, further reducing total
latency by 65.85% on average, indicating a promising solution
for edge multi-cluster and hybrid environments.

Index Terms—Edge computing, analytics placement, data lo-
cality, decision-making processes, data-driven decision.

I. INTRODUCTION

Modern IoT applications such as public safety video surveil-
lance [1], predictive maintenance in smart manufacturing [2],
and traffic management in smart cities [3], are characterized
by strict latency requirements. Due to the rapidly increasing
number of IoT sensing devices, data production is growing
exponentially [4], with negative effects on the latency of
analytics required by IoT applications. Edge computing, i.e.,
moving cloud processing closer to data sources, has been
proposed as a solution to address these issues [5].

Still, the rapidly growing amount of data produced at
the edge affects traditional centralized data collection and
processing. Data can be transferred and replicated due to (i)
limited storage capacities [6]; (ii) edge failure probabilities [7];
(iii) meeting certain service level objectives (e.g., data loss
tolerance [8]); (iv) workload balancing [9]. As a consequence,
data can reside in locations different from where they were
initially produced. Since exploiting data locality is crucial for

low latency analytics, it is important to keep track of data
movements for timely placement of analytics applications.

Typical examples are edge video analytics applications.
Performing video analytics (e.g., object detection to extract
specific information of video frames) close to the source of
data (e.g., on edge servers such as traffic cameras or micro
data centers) is considered as the killer app for edge comput-
ing [10]. For example, video analytics on traffic footages of a
specific area could be submitted to detect a suspect’s vehicle.
However, sampled footage frames from a traffic camera system
can be stored at locations different from the source node to
ensure fault tolerance, affecting the latency of on-demand ana-
lytics. This problem is present in other event-driven scenarios,
where critical decision-making processes strongly depend on
the timely placement of analytics requests, such as finding lost
children or pets [1], and failure prevention in smart manufac-
turing [2]. Therefore, making self-adaptive analytics placement
to the most suitable location is an important step toward
improving the overall latency of decision-making processes.

In typical placement strategies for data processing applica-
tions available in the literature, researchers focus on traditional
centralized data collection and analytics solutions [11], [12], or
placing data processing based on resource-cost trade-offs [13],
but do not discuss critical latency requirements of such
analytics applications. Others propose strategies for latency-
aware placement configurations of data stream processing
applications [14] and low-latency data management on the
distributed edge [15]. Many state-of-the-art approaches for
analytics placement address the data locality from aspects
such as edge-cloud workload balance [16], resource usage
and query accuracy trade-off [17], or the fairness of cloud
resource allocation [18]. Still, they do not consider the adaptive
placement of on-demand analytics for low-latency access to
user-requested data in the distributed edge environment. Data
movement tracking and locality-awareness for scheduling on-
demand analytics across distributed edge nodes are currently
unsolved problems [19], [20].

To ensure efficient placement of on-demand analytics con-
sidering data locality and lower analytics execution time,
we propose SEA-LEAP, a framework for Self-adaptive and
Locality-aware Edge Analytics Placement, featuring:
• a new architecture, enabling the exploitation of data

locality based on tracking mechanism that manages event-
triggered registration of edge dataset movements;



• a generic control mechanism, allowing on-the-fly adap-
tation and guided placement of on-demand analytics to
node locations storing required input datasets;

• a placement optimizer, enabling on-demand analytics
placement to the most appropriate dataset location that
minimizes overall analytics requests execution time.

We evaluate SEA-LEAP by conducting experiments on
(i) real-world video analytics application; (ii) real-world sets
of video frames as input for the application; (iii) obtained
network and inference benchmarks, and (iv) heterogeneous
edge infrastructure using Kubernetes platform. Experimental
results show that SEA-LEAP is able to (i) autonomously
deploy on-demand analytics requests (e.g., object detection),
and by featuring adaptive data movements for certain network
and node characteristics, additionally, (ii) reduce the request
execution time by 65.85% on average. Our paper advances
the state-of-the-art approaches with a generic solution for de-
ploying on-demand analytics while dealing with data locality
issues. This can help users and developers to efficiently and
timely deploy requested analytics across different edge infras-
tructures, indicating a promising solution for geo-distributed
edge multi-cluster and hybrid environments.

We describe a motivational use case and the importance
of data locality in Section II. SEA-LEAP system design is
proposed in Section III, while tracking and control parts are
detailed in Section IV and Section V, respectively. Section
VI shows the experimental setup, while Section VII describes
SEA-LEAP evaluation and discussion. Related work is out-
lined in Section VIII. Section IX concludes the paper.

II. BACKGROUND

A. Motivational Use Case

We consider the motivational scenario described in Fig. 1.
Nowadays, many cities are introducing restrictions on access-
ing certain areas such as central business districts (CBD), low
emission zones for polluting vehicles, or any other roads with
a charging system. It often happens that people violate rules
either entering without permit or exceeding allowed periods.
Our scenario considers a video analytics application that can
be queried to find a vehicle suspected of violating traffic rules
in captured footages (e.g., by recognizing license plates) in a
smart city. This requires placing on-demand analytics requests
on edge infrastructure using specific video datasets.

However, edge servers can fail to execute analytics services
for different reasons such as exceeding capacity, power out-
ages, or network failures [7]. Consequently, in the context of
edge servers, it becomes necessary to replicate relevant data
and services to other nodes (blue arrows), to meet Service
Level Objectives (SLO), e.g., service availability. Based on
calculated failure probabilities, some datasets can be regularly
replicated (partially or completely) to different locations to
avoid data loss or interruption of running analytics services.
To meet the low-latency requirements of on-demand analyt-
ics [21] (e.g., finding a suspect’s vehicle), they should be
placed at the same node where the dataset is stored to reduce

Fig. 1. An example smart traffic scenario to illustrate the problems of (i)
tracking dataset movements/replications due to high edge failure probabilities,
and (ii) consequently timely placement of future on-demand video analytics.

the impact of network latency. However, in a geographically
distributed edge infrastructure, replication causes the required
dataset to be present in location(s) different from where it is
produced. As a consequence, our challenges are to (i) keep
track of datasets, and identify where they are located at a
specific time point; (ii) identify which node is the most suitable
to reduce the latency of analytics, if the requested dataset
is present in multiple locations. Inspired by our InTraSafEd
5G project1 (Increasing Traffic Safety with Edge and 5G)
for improving traffic and pedestrian safety through video
analytics, we consider its benefits for running on-demand
analytics on heterogeneous edge servers such as Raspberry Pi
roadside devices with cameras attached to smart traffic lights.

Definition 1. On-demand data analytics represents data pro-
cessing applications that are submitted to a computational
infrastructure I in response to specific user requests R.

The main characteristics of on-demand data analytics are:
(i) they refer to specific input datasets [2], and (ii) they
have low-latency requirements [21]. In this work, on-demand
data analytics are represented as container-based applications,
which can be placed in different nodes of computational
infrastructure (as in [22] and [23]). The input of on-demand
analytics is a finite dataset that can be stored in different node
locations. We focus on a set of sampled video frames generated
from video-camera systems.

B. Locality-aware Edge Analytics Placement

Edge computing is a paradigm where computation is per-
formed on edge nodes, deployed near data sources. Edge
computing is the key to exploit data locality, i.e., processing
data closer to its origin, instead of collecting and processing
data far from its source [24]. Data locality is considered
of paramount importance to meet low-latency requirements
of on-demand analytics [25], [26]. However, identifying the

1newsroom.magenta.at/2020/01/16/5g-anwendungen-in-wien



correct dataset location to timely perform processing in the
distributed edge is a challenging issue due to the regular data
transfers and replications. Therefore, we introduce SEA-LEAP,
a new framework allowing users and developers to easily
deploy on-demand analytics applications without knowing
the current location of the required datasets. Once required
datasets are located by SEA-LEAP, on-demand analytics are
automatically deployed to the most appropriate edge nodes,
allowing analytics requests to meet low-latency requirements
and significantly improving decision-making processes.

III. SEA-LEAP DESIGN

The design concept of SEA-LEAP is driven by the following
properties for on-demand edge analytics placement, namely,
• Data locality-awareness: as shown in the motivational

scenario, data can regularly change its locations over
geographically distributed and heterogeneous edge nodes
for different reasons, making it challenging to exploit data
locality. Therefore, the framework should be able to keep
track of dynamic data movements and enable efficient
locality-aware data management.

• Autonomy: on-demand analytics requests, as shown in
the motivational scenario, often have low-latency re-
quirements, making it difficult to timely identify the
node minimizing overall request execution time. For this
reason, the framework should be able to (i) find the most
appropriate node location for analytics placement and (ii)
handle numerous requests on time, with little or no human
intervention in the deployment process. To this end, we
need to enable autonomous analytics placements.

• Genericity: the computational edge infrastructure can be
heterogeneous regarding both hardware resources and
software configurations. Therefore, the framework design
should be generic and applicable to work on top of
existing systems by customizing logic of proposed com-
ponents and services, improving the overall reusability.

Fig. 2 provides an overview of the proposed SEA-LEAP
architecture. We envision the on-demand analytics placement
scenario based on data locality. We illustrate three main parts:

Edge sites represent sets of geographically distributed edge
nodes capable of executing on-demand analytics on data com-
ing from IoT devices. IoT devices constantly generate data,
which are transmitted to the edge infrastructure for temporary
storage and future analytics.

Tracking mechanism is a component used for event-
triggered registration of datasets and for tracking their future
movements. It includes a monitoring service and meta-dataset
that stores location-related details about datasets, enabling
their dynamic tracking in the distributed edge. We focus on
datasets with fixed sizes, which are generated, processed, and
stored at the edge for future analytics. This is typical in
storage-limited edge nodes, since in many cases it is enough to
have a subset of data to preserve the analytics accuracy [27].

Control mechanism is a component performing placement
of on-demand analytics. It contains two main sub-components:
the meta scheduler and the placement optimizer. The meta

Fig. 2. SEA-LEAP Architecture Overview.

scheduler receives the description of on-demand analytics
with the requested dataset name, and communicates with both
the meta-dataset and the placement optimizer. The placement
optimizer computes the most suitable location for on-demand
analytics to minimize overall execution time. Finally, the meta
scheduler performs the actual placement to a target node.

In Step 1, data generated from different IoT sensing devices
are transferred to edge nodes, where they can be processed or
stored for later analysis. In Step 2, datasets can be moved or
replicated to other nodes due to different reasons such as fault
tolerance. Any dataset generation as well as its replication
or movement are registered and updated constantly within
the tracking mechanism (Step 3). For each dataset, current
location-related details are stored in a database called meta-
dataset. Meta-dataset can include information such as dataset
id, dataset name, corresponding cluster, location path, and data
size. Once a user submits the request description (Step 4), the
meta-scheduler initiates the automatic placement adaptation. In
Step 5, the meta scheduler extracts the required dataset name
and retrieves location-related details of the required dataset
from the database. We assume that a user knows the target
dataset id or name needed as an input for requested analytics.
Some of the proposed solutions include (i) access to a list of
already generated and existing dataset names (e.g., based on a
dataset catalog explained in Section IV), (ii) a consistent and
regulated, easy-to-remember naming of datasets. Considering
that (i) required dataset can be present in multiple nodes and
(ii) different nodes can comply with analytics requirements
(e.g., resource capabilities), in Step 6, the meta scheduler
queries the placement optimizer to find the most appropriate
location for analytics among node location candidates. Finally,
the analytics application is placed to the most appropriate
node (Step 7). The proposed SEA-LEAP follows the service-
oriented architecture (SOA), featuring multiple parts and ser-
vices that can be maintained independently. The following
subsections describe all proposed parts in detail, while Table I
lists the main notations used in our approaches.

IV. TRACKING MECHANISM

Based on the architectural model, we describe the tracking
mechanism. Fig. 3 shows SEA-LEAP agent-based monitoring
service, which incorporates an event-triggered registration of



TABLE I
MAIN NOTATIONS AND DEFINITIONS

Notation Description
α An analytics application that requires input data.
dloc Variable representing the current dataset location.
dname Variable representing name of the dataset during the

data generation at the data source
dma A data management action (e.g., replication).
metadb Meta dataset database with location-related info.
KB A knowledge base containing edge-relevant information.

rcvmsg Variable containing request description for data mgmt.
rcvf Description containing the request for analytics placement.
Lap The most appropriate location for analytics placement.
L Matrix storing about node candidates for the placement.
D The set of datasets.
N The set of locations.
Λ The set of nodes where dataset d is stored.

l(ni, nj) Latency of network connection between ni and nj .
b(ni, nj) Bandwidth of network connection between ni and nj .

hops(ni, nj) Number of network hops between ni and nj .
size(d) The overall size of a dataset d.
inf time An average inference time on a target node.
no frames Number of image frames in a target dataset d.

changes of data locations and publish/subscribe based tracking
of data movements, while Algorithm 1 shows pseudocode
and the concept behind the agent-based monitoring. Regard-
ing the data locality-awareness and autonomy properties,
an autonomous software agent is employed on top of each
node, constantly monitoring and acting upon data management
events. Location-related details are stored in the meta-dataset
database indicating where the datasets are currently available
and accessible. The event-triggered data registration mecha-
nism (Fig. 3a) consists of several consecutive phases:

Activation of node agents. Every node has an agent
listening to a known port (line 1, Algorithm 1). The while
loop (line 2) serves one client request for data management
action. This phase is executed only once on each node and it
is used in all the other phases. The received description of a
data management action triggers the following phases.

Request for data management. In this phase, different
requests for data management can be initiated (lines 3-4).
We define data management as any data manipulation pro-
cess including (i) generation of a new dataset, (ii) dataset
replication or movement. Data management requests employ
location-related details about data and can be initiated from
(i) meta scheduler (Section V-A), (ii) edge nodes, (iii) edge
providers, or (iv) other incorporated mechanisms maintaining
edge systems (e.g., load balancing, replication, fault tolerance).

Location resolution. In this phase, based on the target
dataset, the location details are either (i) produced for newly
generated datasets or (ii) checked in the meta-dataset before
further actions. In the first case, a dataset is generated and
stored in an edge node. Details about dataset location are saved
in the meta-dataset as well as in the dataset catalog (Fig. 3b).
Dataset catalog (DC), a lightweight key-value store contains
pairs of all generated dataset names and initial locations where
they are created (Step 1). It supports the submission of user’s
analytics request (see Section V), and can be accessed from

(a) Event-triggered data registration (b) Pub/sub based data tracking

Fig. 3. SEA-LEAP monitoring service (a) registration of changes of data
location and (b) tracking data movements due to data management events.

meta-server or keeping a synchronized copy locally. In the
latter case (ii), the required dataset already exists and meta-
dataset is queried, if needed, for retrieving location details.

Data management. In this phase, requested data man-
agement action (dma) is performed (line 5). Node agents
complete data management requests. A trivial example
datamgmt(fetch, dat x, n1) would fetch dataset dat x from
location n1. This phase is designed in a generic way, so it
can also be adapted with other data management operations
by edge infrastructure providers or deployed edge systems.

Location update. Once the previous data management
actions are done, it is required to update new information in
the meta-dataset. In this phase, a new connection to the meta
database is established and corresponding dataset entries are
updated (line 6). Once the database is updated, the source
node of the corresponding dataset is notified via the pub/sub
(publish/subscribe) channel enabling data movement tracking.

In case of failures, error messages will be returned in each
phase. Furthermore, Fig. 3b shows the pub/sub based tracking
of data management. First, as shown in the location resolution
phase, DC stores existing and unique dataset names (Step 1)
included in the Knowledge Base (KB). KB represents prior ob-
tained and edge-relevant details such as edge-specific network
topology, node characteristics, and analytics benchmarks. They
provide a collection of information necessary for analytics
placement (explained in Section VII). Edge node locations
and produced datasets can be numerous and distributed. Thus,
regarding the scalability of the tracking mechanism, the mon-
itoring service includes a pub/sub messaging system in which
every edge node (n1, n2, ..., nn) can be subscribed to topics
representing dataset names or ids that were initially produced
at these nodes (Step 2). Once the dataset location is changed

Algorithm 1 AgentBasedDatasetRegistration
1: Listening for data management requests
2: while TRUE do . serving one client request
3: Connect to client
4: parse(rcvmsg) . analyse received message
5: datamgmt(dma, dname, dloc) . data management applied
6: Update metadb, setting new node location dloc for given dname

7: Disconnect from client
8: end while



in the meta-dataset during the location update phase, the meta-
broker publishes the change to a specific topic (Step 3). As
a result, each node has information about the current location
of its datasets, facilitating further edge data management
actions. We assume a pub/sub system, such as MQTT (Mes-
sage Queuing Telemetry Transport), due to its communication
scalability and minimum resource requirements [28]. Note
that the tracking mechanism is essential for enabling data
locality-awareness, while the following control mechanism
primarily ensures the self-adaptive and timely placement of
edge analytics based on data locality. The scalability of the
tracking mechanism will be investigated in future work.

V. CONTROL MECHANISM

The control mechanism is the cornerstone of SEA-LEAP
architecture. The goal is to enable self-adaptive placement of
an analytics application α considering a dataset location dloc,
based on two actions, namely,
• GuideMe: static placement of an analytics application to

the source node candidate initially storing the requested
dataset. If the input dataset is simultaneously present on
multiple locations, the node ensuring the lowest estimated
analytics execution time is selected as the target one;

• FollowMe: dynamic placement of an analytics application
to an alternative node candidate that minimizes overall
request execution time. In this case, an adaptive dataset
movement from the source to the alternative node is
necessary, prior to the analytics placement.

These actions can offer a continuous adaptation of analytics
placements in highly distributed and networked edge servers.
Both actions rely on two important services of the control
mechanism, namely, the meta-scheduler and the placement
optimizer, described in the following.

A. Meta Scheduler

Accessing the dataset locations can be done by storing
location details in the meta-dataset (described in Section IV),
while placement adaptations are managed on-the-fly within the
meta scheduler. We assume that the meta scheduler is accessi-
ble, and there can be multiple instances serving. Algorithm 2
describes the meta scheduler life cycle in detail. The scheduler
continuously listens for new requests in lines 1-2. Once a
user sends an analytics request description, containing details
for application execution, its format is checked. If its format
is valid (lines 3-5), the meta scheduler extracts information
such as the name of the required dataset id and analytics
process α (line 6). Next, the meta-dataset is checked and
relevant information is retrieved (lines 7-8). If corresponding
information exists, the meta scheduler will send details to the
placement optimizer (line 9). The output of the placement
optimizer represents the node location that guarantees the
lowest total latency for the request and it is stored in the Lap
(lines 10-11). In case the usage of Lap requires adaptive data
movement, the meta scheduler will follow the procedure from
Algorithm 1 (lines 12-14). Finally, meta scheduler performs
the placement of α in the node Lap (line 15).

Algorithm 2 MetaScheduler
1: while TRUE do . loop serving one client’s requests
2: rcvf ← waitConnection() . waiting for incoming connections
3: if rcvf = fmt then . checking the format of analytics request
4: continue
5: end if
6: parse(rcvf ) . extracting needed information (dname, α)
7: Create matrix Λ with location-related information about d
8: Λ← retrieve(dname) . retrieving details from metadb
9: if Λ 6= empty then

10: Lap ← PlacementOptimization(Λ)
11: Adapt deployment templates with the Lap and other info
12: if Lap is not one of the initial location from Λ then
13: Replicate dataset d to Lap using Algorithm 1
14: end if
15: deploy(R,Lap) . placing analytics to node location Lap

16: end if
17: end while

B. Placement Optimizer
The goal of the placement optimizer is to find an edge

location that minimizes the total latency. It is designed to
satisfy users’ latency requirements for timely decision-making
processes. Total latency is impacted by (i) analytics execution
time, that depends on node and dataset characteristics, (ii) data
transfer, that is affected by network characteristics.

We consider analytics placement as a minimization problem
with latency as an objective. We assume that users can
submit requests for executing data analytics applications over
different input datasets, whose location is unknown to the
user. Computational infrastructure is modeled as a graph
I = (N , E) (as used in [29]), such that N is a set of
different nodes where applications and datasets can be placed,
and E models the network connections between nodes. For
each (ni, nj) ∈ E , with ni, nj ∈ N , we define both latency
l(ni, nj) and bandwidth b(ni, nj) measurements of network
connection (Section VI-C).

We also define a set D of different generated datasets, that
can be initially stored in one or multiple nodes n ∈ N over
a geographical area. In the latter case, we assume that those
datasets are always synchronized. Further, each dataset d is
defined by its size size(d) and the set Λ(d) of nodes where
d is stored. Users submit a request R = (α, dname) to I,
where α is an analytics application, and dname is the name of
input dataset for α. For each R, SEA-LEAP goal is to identify
location Lap for α and d that minimizes R total latency, i.e.,

Lap = arg min
L[i]

(L[i]t latR ), L(α) = L(d). (1)

L is a matrix that contains location candidates with calcu-
lated total latency, including a potential data transfer and the
analytics execution time on the specific node candidate:

TL = tmvd(ni,nj) + t(R,nj), (2)

where ni initially stores the dataset d (ni ∈ Λ(d)), and nj
is an alternative node candidate (nj ∈ L(d)). In case of ni
as the initial candidate, i.e., ni = nj , then TL = t(R,ni).
Otherwise, we define tmvd(ni,nj) as the time required to send d
from ni to nj , i.e.,

tmvd(ni,nj) = l(ni, nj) + hops(ni, nj) ·
size(d)

b(ni, nj)
, (3)



TABLE II
EDGE NODE TYPES USED IN THE EXPERIMENTAL SETUP, TECHNICAL DETAILS AND INFERENCE LATENCY BENCHMARKS FOR EACH NODE TYPE.

Node label Node type CPU RAM # of nodes Edge TPU Inference/frame [ms]
A Raspberry Pi 4 Quad-core Cortex-A72 (ARMv7) at 1.5GHz 4GB 2 yes 17.81
B Raspberry Pi 4 Quad-core Cortex-A72 (ARMv7) at 1.5GHz 4GB 1 no 250.74
C Raspberry Pi 3 B+ Quad-core Cortex-A53 (ARMv7) at 1.4GHz 1GB 8 no 500.62

where hops(ni, nj) is the number of hops between ni and nj .
Further, we define t(R,nj) as the estimated time required to
complete analytic request R(α, d) on node nj , i.e.,

t(R,nj) = inf time(nj) · no frames(d), (4)

where inf time(nj) is an average inference time per frame,
and no frames(d) is the corresponding number of frames in
target dataset d (see Section VI-C).

Algorithm 3 describes the placement optimizer. First, two
data structures are created to store location candidates for
analytics placement (lines 1-2): L, containing a total estimated
latency, and LKB , which stores potential candidates retrieved
from KB if they satisfy certain conditions, e.g., nodes with
better inference time compared to the source node(s) (line 3).
Next, each node containing the requested dataset (line 4) will
initially become a candidate for placing the required analytics
(lines 5-7). Then, even if the required dataset is present on
multiple nodes, the placement depends on the total latency of
each candidate (line 6). In lines 8-12, we calculate total latency
for each new candidate, since due to the heterogeneity of the
infrastructure it is possible to achieve a lower total latency
on a node with more resources, despite the data transfer (line
10). Consequently, the most appropriate node location Lap is
the one offering the lowest total latency (line 14), returned in
line 15. We consider three scenarios: (i) the dataset is stored
on a single node with the lowest estimated analytics latency;
(ii) the dataset is stored on multiple and heterogeneous nodes,
therefore the most powerful will run the analytics; and (iii)
edge node(s) storing the required dataset do not have resources
to meet latency requirements, thus, the dataset will be placed
to a node which minimizes overall request execution time.

Theorem 1. SEA-LEAP complexity is O(n ·m+ k).

Algorithm 3 PlacementOptimizer
Input: Set of nodes storing req. dataset Λ
Output: The most appropriate location Lap

1: Create matrix L forming location candidates with est. total latency
2: Create matrix LKB for potential location candidates from KB
3: LKB ← KB(ntype > Λ(ntype)) . retrieving alternative candidates
4: for each ninit ∈ Λ do
5: Add node ninit to L
6: Calculate TL(ninit) for the initial node using (4)
7: L(ninit, TL)← TL(ninit)
8: for each nnew ∈ LKB do
9: Add node nnew to L

10: Calculate TL(nnew) for new nodes locations using (2), (3) and (4)
11: L(nnew, TL)← TL(nnew)
12: end for
13: end for
14: Lap ← Li with minimum total latency . Compute Lap using (1)
15: Return Lap

Proof. SEA-LEAP complexity is determined mainly
by MetaScheduler and PlacementOptimizer.
MetaScheduler complexity (see Algorithm 2) depends
on PlacementOptimizer (see Algorithm 3), since all
other lines have complexity O(1). The for loop (line 4)
from Algorithm 3 iterates over the set of node locations
Λ that simultaneously store the requested dataset. Entering
the inner for loop in line 8, it iterates over each new node
location candidate and calculates the estimated total latency
in line 10, resulting in complexity of O(n ·m), where n is the
number of the initial node candidates, and m is the number
of alternative node candidates. Next, searching the candidate
with the lowest total latency in line 14 has the complexity
of O(k), where k is the total number of node candidates.
Other lines are O(1), resulting in the overall complexity of
O(n ·m+ k).

O(n·m+k) is acceptable in our context, since n is expected
to be small due to limited edge capacities and m is limited to
(i) nodes whose types match the types from KB benchmarks
and (ii) nodes that have lower inference time per frame than
initial nodes from the set Λ.

VI. EXPERIMENTAL SETUP

SEA-LEAP is implemented using Python, while the exper-
imental evaluation of the proposed SEA-LEAP architecture
uses Kubernetes for deploying analytics applications. Our
emulation-based evaluation is based on real traces and using
RuconLiveLab, our physical edge infrastructure consisting of
11 Raspberry Pi (RPi) single-board computers, available in
three different configurations (see Table II).

A. Implementation Details

We first introduce technologies used for the experimental
evaluation of SEA-LEAP. Considering the deployment of ana-
lytics applications, many researchers and industries are reveal-
ing nowadays the rapid adoption of Kubernetes orchestration
platform [22], [23], relying on master-worker architecture.
The master node is, in our scenario, responsible to assign a
container-based analytics application to one of the available
nodes in the corresponding cluster. Containerized applications
are typically using Docker, a container platform used to build
and isolate applications with a relevant stack of services. Here,
to deploy an analytics application to edge nodes, a docker
image has to be included in the Kubernetes manifest, i.e.,
deployment file, typically defined in YAML (Fig. 5).

B. Target Application

We consider as our target application object detection, a
typical video analytics processing in which an input set of



video frames is analyzed. Analytics output is a list of detected
objects with confidence levels and their positions on the
image. We assume that edge keeps only a limited number
of frames, e.g., sampling an industry-standard frame rate of
30fps and filtering only frames with significant changes or
object movements, due to the limited capacity of edge nodes
and efficient bandwidth usage [10].

In this experimental setup, we used the computation logic
from our real-world application InTraSafEd 5G, used to per-
form object detection analytics to increase traffic and pedes-
trian safety with edge and 5G in the city of Vienna. The
application runs a quantized version of SSD MobileNet v2
model [30], a lightweight and pre-trained convolutional neural
network (CNN) based object detection. We dockerized the
object detection logic and expose it as a service running in a
container. Docker images for all node types, with and without
edge TPU attached (Coral USB Accelerator enabling high-
performance neural network inference), are available on the
Docker hub repository2, while the SEA-LEAP implementation
is accessible on the GitHub repository3. Further, we used a
PostgreSQL database running in a docker container to store
metadata, i.e., location-related details about existing datasets.

C. Input Datasets
We evaluate proposed approaches using datasets typically

used in computer vision analytics applications such as ob-
ject detection and recognition [24]. To perform a complete
evaluation, we select datasets of a different average size of
image files, which allows having a wide diversity in terms
of resolution, dimensions, and color depth. The main char-
acteristics of datasets are presented in Table III. For each
dataset, we show the average size-frame ratio (γ) calculated
as γ(d) = size(d)/no frames(d), impacting SEA-LEAP
placement optimizer (explained in Subsection VII-B).

Dataset Intrasafed comes from the InTraSafEd 5G project,
containing sampled video frames from the chosen Vienna’s
intersection used for the real-time detection of critical sit-
uations and to support drivers in avoiding accidents. The
frames are taken by traffic cameras and show critical situations
where objects like pedestrians, cyclists, and pets, can appear
in drivers’ blind spots when turning on intersections.

Dataset Penn-Fudan comes from an image database used
for object detection and recognition on areas around campus
and streets around University of Pennsylvania and Fudan Uni-
versity [31]. Selected frames represent various image qualities
and angles of captured objects (pedestrians, bikes, and cars).

Datasets Sherbrooke and René-Lévesque come from the
cameras monitoring different intersections, used for detecting
and tracking multiple objects of various types in outdoor
urban traffic surveillance [32]. Selected image frames repre-
sent different camera angles and resolutions, namely, a low
camera monitoring cars, trucks, and pedestrians moving at an
intersection (Sherbrooke) and a high camera covering three
intersections with cars and bikes (René-Lévesque).

2https://hub.docker.com/r/ilujic/inference-arm32v7/
3https://github.com/lujic/sea-leap

TABLE III
MAIN CHARACTERISTICS OF DATASETS.

Dataset name Frames Size [MB] Size/frame [MB] Dimensions
Intrasafed 600 91.4 0.15 1280x720

Penn-Fudan 60 25.2 0.42 various
Sherbrooke 1800 154 0.09 800x600

René-Lévesque 3600 1011.8 0.28 1280x720

D. Testbed Configuration

In the experimental setup, we emulated a real-world system
from our InTraSafEd 5G project, where node communication
is handled by TU Wien’s MQTT broker, communicating to
distant edge nodes deployed on traffic lights near a short-range
cellular base station. Emulating and extending this real-world
scenario, Fig. 4 shows our testbed configuration as well as
an initial setup based on different edge sites (E1-E5). Edge
sites represent small cells in a cellular network, featuring
short-radius coverage of a small cell base station (as used
in [29]), providing specific network connection types. Each
site can contain one or multiple edge clusters, where in our
setup contains multi-node (i.e., E1 and E3 including 3-node
clusters, E2 including 2-node cluster) and single-node (i.e.,
E4 and E5) Kubernetes clusters. Edge meta-server represents
a more reliable node (e.g., edge micro data center), able to
communicate with edge nodes within different sites. Meta-
scheduler receives from a user the description of an analytics

(a) The emulation-based scenario and network topology.

(b) Edge infrastructure overview.

Fig. 4. Testbed configuration.



TABLE IV
NETWORK LATENCY AND BANDWIDTH BENCHMARK (VIENNA’S SUBURB).

Network type Latency [ms] Bandwidth [Mbps]
3G 247.92 8.81
4G 23.44 41.43
5G 13.83 66.55

request with a specific dataset.
We evaluate our emulation-based approach with the con-

tainerized analytics application, where as a baseline, we mea-
sured inference times on the real-world datasets using our
physical edge nodes, as described in Table II. For each node
type we show the average inference time per single image.
Results are averaged over 100 image frames for statistical
significance, since by adding more images the differences in
inference time show a deviation of 39µs on average. These
results are saved in the KB, which is used by Algorithm 3
for selecting the node which minimizes the latency of edge
analytics placement. Further, Table IV shows different latency
and bandwidth measurements obtained using standard iperf
application. The representative values are weighted averages
of bandwidth collected on different network types in a suburb
area of Vienna from the InTraSafEd 5G project and will be
used in our placement optimizer (Section VII-B).

VII. SEA-LEAP EVALUATION

A. Static Placement Evaluation

Based on the GuideMe action (Section V), the SEA-LEAP
placement optimizer will enable the execution of the user’s re-
quest on a node storing the required dataset, i.e., without con-
sidering alternative candidates (considered in Section VII-B).
In the case of multiple locations storing the dataset, a node
showing better performances (node type with a lower inference
benchmark observation) will be prioritized. Otherwise, the
algorithm will randomly select one of them. However, to
enable the analytics execution on a target node using the
requested dataset, the meta-scheduler needs to add a set of
placement-specific details into a Kubernetes deployment file.

In our design, the meta-scheduler already stores different
deployment templates that will be adapted with a specific set
of information such as the node location, appropriate container
image of the analytics application, and the dataset path on the
target node (using hostPath as a volume). A simple example
of an adapted deployment file is showed in Fig. 5. Based
on specific lines from this description (i.e., the one including
keyword nodeName), a distant master node will know where to
place the analytics application in its cluster using the default
scheduler. Beforehand, the edge meta-server is created as a
single-node Kubernetes cluster and enabled to communicate
to multiple clusters, using so-called Kubernetes configuration
files with needed details (e.g., IP addresses of master nodes
from our testbed edge sites). Followed by a meta-scheduler
command to process a certain input dataset on the exposed
analytics application, the obtained results can be forwarded
back to a user. That said, the proposed SEA-LEAP meta-
scheduler is designed as a new service that can be used on top

Fig. 5. SEA-LEAP deployment YAML file example.

of existing schedulers as a feature in different edge scenarios
that require data locality-aware analytics placement.

B. Adaptive Data Movement Evaluation

In this experiment, we want to evaluate the FollowMe action
(Section V), SEA-LEAP placement optimizer will consider
alternative location candidates different than the initial node
storing the required dataset, and select the option with the
lowest total latency. Thus, the placement algorithm estimates
the total latency (based on details from KB) including the
transfer of requested data from the source to an alternative
location. Fig. 6 shows the results of the SEA-LEAP placement
optimizer applied to each dataset from Table III. In this
representative example, the source node location of a dataset
is set to the edge site E1. For that reason, the source location
from E1 represents at the same time an initial candidate for
analytics placement. Other alternative candidates will include
additional network latency due to needed dataset transfer.
Green and yellow shaded locations show first and second-best
candidates, respectively.

For dataset Intrasafed (Fig. 6a), the selected appropriate
node location for analytics placement in each network type
results in moving the dataset from the source node storing
the dataset. In all cases of 3G (low), 4G (medium), and 5G
(high) network conditions, we can decrease the total latency
by 13.47%, 78.81%, and 85.46%, respectively, by moving
the dataset to a candidate location in E5. For dataset Penn-
Fudan (Fig. 6b), in low network conditions the selected
appropriate node location for analytics placement will be in
the source location storing the dataset, while for medium and
high network conditions the total latency becomes 47.77% and
66.14% lower by moving dataset to an alternative location
candidate. At the same time, even in the scenarios where the
most appropriate location cannot host the analytics application
or the dataset for different reasons (e.g., limited capacity,
high failure probability), selecting the second-best candidate
can still achieve 17.44% and 29.70% lower total latency
by selecting a location candidate in E4, for medium and
high network conditions, respectively. For dataset Sherbrooke
(Fig. 6c), for all network types, moving dataset can bring
49.86% (3G), 86.54% (4G), and 90.28% (5G) lower latency



(a) Intrasafed (b) Penn-Fudan (c) Sherbrooke (d) René-Lévesque

Fig. 6. SEA-LEAP placement calculation of node location candidates in different edge sites, driven by GuideMe and FollowMe actions. It is based on network
connection benchmarks from a real-world edge location. For all cases, the source location of the dataset is set to E1.

than in the source location initially storing the dataset. The
dataset René-Lévesque (Fig. 6d) with the largest number
of frames and overall size can benefit from better network
conditions, achieving 63.92% and 76.20% lower total latency
for medium and high bandwidth availability, respectively.

C. Discussion
The results show twofold benefits of the proposed SEA-

LEAP, namely, (i) it enables an autonomous placement of
analytics requests, and (ii) it allows the self-adaptation to
data locality by considering both network and node candidate
characteristics. For example, although node types A and B
from our experimental setup have respectively 28x and 2x
lower inference time per frame compared to the source node
type C (Fig. 4), additional transfer of data does not bring
benefits if lower bandwidth is available, for specific datasets.

Despite different network characteristics of different edge
sites, the network performance will depend on the available
network bound of a node location storing the dataset. As
described in Section V-B, the total latency of placing analytics
to new location candidates will be also impacted by other
factors such as network latency, number of hops, analytics
execution time, and the size of the dataset. Still, based on the
experimental results, moving the dataset to another location we
can reduce total latency by 65.85% on average. To determine
these specific cases, Fig. 7 shows the SEA-LEAP placement
decision rule and which aspects have strong impacts on it.
Estimated total latency of analytics placement is largely af-
fected by two main aspects, namely, network bound (available
bandwidth) and compute (node performance) bound.

Fig. 7a shows the relation between the average image file
size and network throughput. We see that the higher the
bandwidth, the higher is the network bound for transferring a
certain number of images for a specific dataset. However, this
relation does not hold for the compute-bound of a specific node
candidate in this context. This is because the target inference
application resizes each input frame to the same dimension
due to performance reasons. Since resizing does not affect the
accuracy of object detection, the average inference per frame
(i.e., compute-bound) will stay the same, independent of the

dimension or size of a single image frame. As a consequence,
the computation time for a specific node type will depend
exclusively on the number of input image frames.

For example, in Fig. 7b, the number of input image frames
for each dataset is set to 60, while the initial candidate for
analytics placement is a source node type B, and only alterna-
tive node candidates with lower inference time per frame are
considered, i.e., node type A. The solid black line represents
the compute-bound of the source node B as the baseline,
i.e., the total latency of running requested analytics on the
dataset in the source location is equal to ∼15s (60·250.74ms).

(a) Network bound

(b) Placement decision

Fig. 7. SEA-LEAP placement decision. Subfigure (a) shows network bounds
for various image file sizes. Subfigure (b) shows a borderline of placing
analytics between the source node B and a new node A, among different
datasets (60 frames) and available bandwidths with two hops.



Dashed lines represent the estimated total latency of running
the analytics on the datasets in alternative node candidates,
including data transfer over different network characteristics
with two hops. Depending on the available bandwidth in
the source location, the self-adaptive SEA-LEAP placement
optimizer will decide whether to place analytics to (i) the
initial location storing the dataset (GuideMe) for all results
above the baseline, or (ii) a new location where the dataset
is also moved (FollowMe) for all results below the baseline.
Our self-adaptive solution shows that considering data locality
in edge analytics placement can significantly improve overall
analytics requests execution time, and thus impacting the
timely placement of on-demand analytics applications.

D. Assumptions and Limitations

The SEA-LEAP placement optimizer estimates total latency
for initial and alternative candidate locations based on prior
obtained and managed edge-related details such as network
characteristics (e.g., network types and number of hops be-
tween edge sites) and analytics benchmarks on node types.
Also, we assume in our setup that edge nodes have access
to existing docker images of analytics applications. Still, we
partially address these issues by designing SEA-LEAP parts as
generic services, which can be easily extended to consider (i)
other analytics applications, (ii) different network topologies
and characteristics, (iii) new datasets, and (iv) additional con-
ditions for filtering location candidates for analytics placement.

In the proposed solution, a centralized edge meta-server
represents a single point of failure, which could affect SEA-
LEAP reliability. Also, in the current version, we assume a
network of edge servers managed by trusted infrastructure
providers that control access to edge computing resources.
Data security and privacy issues are delegated to the trusted
infrastructure. Even though accessing metadata via the meta-
scheduler or through the tracking mechanism already provides
access control, we believe that additional protection measures
could be taken, especially in contexts where security is critical
(e.g., in use cases with sensitive information).

VIII. RELATED WORK

Analytics placement. Analytics placement at the edge has
been discussed in several recent works. In [12], the authors
propose a service-oriented resource management framework
for fog computing focusing on service reliability. The pa-
per [13] proposes EdgeEye, a service enabling the devel-
opment and execution of video analytics. EdgeBox [11] is
an architecture to improve automatic event detection in edge
near real-time video analytics. However, these works limit
placement to a specific cloud/edge location. Authors in [24]
discuss the decentralized and federated edge infrastructure,
focusing on a scalable approach to perform data collection
and video analytics at the edge. Still, these approaches do not
consider data locality and adaptive analytics placement.

Data management. Current data management approaches
adopt storage services configured toward centralized data
aggregation [33] or geo-distributed data storage [34]. The

work [35] surveys existing solutions for IoT data management.
In [10], the relationship between resource availability and ac-
curacy of video analytics are investigated, without considering
data locality. In [19], Firework system is described facilitating
distributed data processing, considering only specific locations.

Latency-aware scheduling. The work [36] addressed the
offloading of computation-intensive tasks on edge nodes as
an optimization problem. The proposed scheduling approach
minimizes latency by static offloading of dependent tasks
according to input data. In [14] latency-aware placement of
data stream analytics applications is proposed, while [15]
performs low-latency data management over geo-distributed
and heterogeneous edge infrastructures. We focus on a latency-
aware placement of on-demand analytics using data locality.

Data locality. The exploitation of data locality has been
considered by other works in literature. For example, [20] dis-
cuss the concept of Semantic Cache, which employs a caching
technique for edge analytics while reducing latency compared
to cloud-only inference. In [37], the spatio-temporal locality of
analytics is used to improve workload balancing between edge
and cloud servers. Other works for analytics placement exploit
data locality considering the edge-cloud workload balance
perspectives [16], the trade-off between the resource usage
and query accuracy [17], or the fairness of cloud resource
allocation [18]. However, these works either do not consider
the autonomous placement of on-demand analytics or focus
on different aspects than minimizing requests execution time.
We bridge these gaps by considering data locality in the self-
adaptive placement of on-demand edge analytics.

IX. CONCLUSIONS AND FUTURE WORK

Edge computing allows the execution of latency-sensitive
analytics close to data sources. However, executing on-demand
analytics brings critical challenges to (i) identify locations
of requested input datasets, and (ii) determine the target
computational node where analytics must be deployed to min-
imize user requests execution time. We propose SEA-LEAP
(Self-adaptive and Locality-aware Edge Analytics Placement)
framework to address the aforementioned issues.

SEA-LEAP includes a mechanism for tracking data move-
ments on top of which we propose a generic control mecha-
nism featuring meta-scheduler and placement optimizer. Our
solution allows on-the-fly placements of on-demand analytics
considering data locality and minimizing the request execution
time by performing adaptive data movements. We evaluate
SEA-LEAP by considering on-demand video analytics ap-
plication using our physical edge infrastructure and obtained
benchmarks. Results show benefits for users and developers,
automating the placement of analytics requests and reducing
the total latency by 65.85% on average for certain network and
node characteristics. We believe that SEA-LEAP is a valuable
step towards data locality-aware placements of on-demand
analytics for edge multi-cluster or hybrid environments.

In the future, we plan to consider the single point of
failure of the meta-scheduler, proposing a solution to improve
scalability and reliability of meta-scheduler, i.e., by using



multiple instances and implementing replication strategies of
meta-dataset. We also plan to investigate the scalability of the
tracking mechanism by experimenting different edge storage
technologies such as Ceph, Minio, or other object storage
technologies. Finally, we plan to further investigate the privacy
and the data protection of SEA-LEAP.
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