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Abstract. Alpine livestock monitoring is critical for ecological preser-
vation and agricultural efficiency. However, existing solutions struggle
with energy constraints, limited network availability, and intermittent
connectivity in remote environments. To address this, we propose an on-
device federated learning framework tailored for PV-powered IoT sen-
sors to optimize energy-communication tradeoffs. Our approach intro-
duces staleness-aware aggregation and solar-aware training scheduling
to address intermittent connectivity and PV variability in remote alpine
environments. Deployed on a real-world testbed with collar sensors, the
framework achieves 92% accuracy in time-series location prediction and
89% F1-score in anomaly detection while using 68% less energy than
centralized baselines.

Keywords: Edge Intelligence · Federated Learning · PV Sensors · Live-
stock Monitoring.

1 Introduction

Livestock monitoring is crucial for sustainable agriculture, especially in moun-
tainous regions, to support biodiversity and rural economies. However, contin-
uous monitoring of free-grazing animals in these remote, resource-constrained
environments faces critical challenges [1]. Traditional cloud-based approaches,
which rely on centralized data aggregation requiring high-bandwidth communi-
cation, are impractical due to a lack of internet connectivity, energy constraints,
and the need for real-time decision-making [2]. Emerging collar-mounted sen-
sors equipped with GPS, accelerometers, and solar harvesting capabilities offer
a promising alternative, but their potential is limited by on-device computational
powers. Furthermore, transporting frequent and huge quantities of data not only
requires significant network resources but also puts a strain on the battery of
these resource-constrained IoT sensors [1].

For livestock monitoring, IoT sensors collect farm data from animals and
send it to the cloud for ML model training. However, in remote alpine regions,
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limited energy and internet access pose major challenges. Alternatively, deploy-
ing ML models on sensors directly demands overcoming two key challenges:
1) intermittent connectivity, which requires adaptive communication across the
computing continuum, and 2) energy-accuracy tradeoff, which arises due to the
limited battery power of sensors and unstable solar harvesting in alpine regions
[3].

Federated learning (FL) is a decentralized approach that allows model train-
ing through collaboration between devices/clients without requiring them to
share their data as it moves learning away from the cloud to devices [4]. FL is
particularly appealing for smart IoT applications as it reduces communication
costs and ensures data privacy. Although FL has been extensively studied for do-
mains such as smart cities [5], healthcare [6], and intelligent traffic management
[7], its adoption in smart farming, especially for remote alpine regions, is still
limited. Existing FL frameworks for IoT [8, 9] focus on urban and controlled envi-
ronments, assuming stable connectivity and grid-powered devices. Furthermore,
these frameworks are often tailored for devices with sufficient computational,
network, and energy resources, making them unsuitable for resource-constrained
IoT devices, such as PV-powered sensors used for livestock monitoring.

We propose an energy-efficient FL framework (EA-FL) specifically designed
for resource-constrained PV-powered IoT sensors, with our major contributions
listed as follows:

1. PV-aware FL architecture that aims to extend the lifetime of the system by
adapting local training to the availability of solar energy.

2. Hybrid network optimization for enabling model aggregation over 4G/5G
while maintaining fault tolerance via LoRaWAN and reducing communica-
tion costs under intermittent connectivity.

3. We conduct evaluations on a real testbed consisting of collar sensors desig-
nated as clients and a Raspberry Pi-based edge server acting as a central
aggregator.

Beyond livestock monitoring, the proposed framework advances FL for ex-
treme environments (e.g., disaster zones) and provides design principles for sus-
tainable, decentralized IoT systems.

The rest of this paper is structured as follows: Section 2 reviews related work.
Section 3 details the framework design, while Section 4 describes use cases and
implementation details. Section 5 presents the results and discusses the system’s
scalability. We present our conclusion in Section 6.

2 Related Work

IoT technologies are increasingly being used for livestock monitoring, to improve
animal welfare and optimize farm management [10, 11]. Prior works in this do-
main have utilized a variety of sensor modalities, including GPS, accelerometers,
and environmental sensors to track animal behavior [11], location [12], and health
[10]. However, traditional systems often rely on centralized data collection and
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processing, which results in critical challenges due to intermittent connectivity
in remote environments [3]. Moreover, the high communication costs associated
with continuous data transmission present another challenge that significantly
impacts the systems’ lifetime.
FL for IoT and Edge Systems: FL has emerged as a key paradigm for collab-
orative learning in IoT applications [9]. Although vanilla FL [4] assumes stable
connectivity and homogeneous data, recent advances adapt FL to handle vari-
ous IoT constraints [13, 14]. For instance, Charles et al. [15] employed gradient
compression to reduce communication overhead, and Lim et al. [16] addressed
the challenge of stragglers in edge networks. In [17], a dynamic voltage scaling
is proposed for FL devices. A client selection strategy with the objective of en-
suring energy fairness is proposed in [18]. However, these frameworks focus on
urban deployments (e.g., smart factories) and consequently fail to address the
critical challenges of remote alpine environments.

FL is gaining traction in agriculture and wildlife monitoring [19, 20]. Manoj
et al. [21] employed FL for crop yield prediction using drones, assuming continu-
ous 5G connectivity. These preliminary works in agricultural applications of FL
have demonstrated their potential to reduce communication overhead while pre-
serving data privacy. However, these studies typically focus on relatively simpler
environments and do not account for the compound challenges of remote alpine
regions, which are subject to severe energy and communication constraints.

Our work differentiates itself by addressing these challenges through edge-
device coordination. More specifically, we propose an on-device FL framework
deployed on PV-powered collar sensors, combined with a hybrid communication
strategy to ensure robust performance in remote alpine settings.

3 Framework Design

Our proposed framework (Fig. 1) is designed to address the energy and con-
nectivity constraints of remote alpine livestock monitoring while leveraging on-
device FL framework to learn a global model. This section describes the testbed
(hardware) setup, the FL framework, and optimization strategies to ensure ro-
bust performance under remote challenging conditions.

3.1 Testbed setup

The proposed framework (Fig. 1) consists of three layers: PV-powered collar
sensors, a hybrid 4G/5G-LoRaWAN communication layer, and a lightweight FL
server. Each collar sensor integrates a GPS module, 6-axis IMU (accelerome-
ter/gyroscope), 2W solar panel with LiPo battery (550 mAh), and a Raspberry
Pi 4 compute module. Furthermore, the setup includes 4G/5G and LoRaWAN
gateways to enable communication between sensors and the FL server. The FL
server, hosted on a low-power edge device, coordinates training via adaptive
aggregation and network orchestration.
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Fig. 1: High-level architecture: Alpine livestock monitoring using on-device FL.

3.2 Federated Learning Framework

The EA-FL framework consists of the standard client-server model, where each
collar sensor serves as an FL client, and an edge server aggregates and coor-
dinates model updates. The training process consists of three main steps: local
model training, federated aggregation, and communication-efficient update strat-
egy. Each sensor trains a local model using its private dataset Di, optimizing a
loss function L with respect to its local model parameters wi;

wt+1
i ← wt

i − η∇L(wt
i , Di) (1)

where η is the learning rate and wt
i denotes the local model update at iteration

t.
After local training, sensors send their model updates to the edge server.

Instead of sending full gradient updates, each sensor applies top-k sparsification
to send only the most significant updates;

Gk = {gj |j ∈ argmax
k
|gj |} (2)

where gj is the gradient component.
Once the server has received the updates, it aggregates local models to gen-

erate the global model update;

wt+1
g =

∑
i∈S

|Di|
D

wt
i (3)

where S represents the number of active sensors and wg denotes the global
model.
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Asynchronous Staleness-Aware Aggregation: Conventional frameworks
such as FedAvg [4] assume synchronous participation, which fails in alpine en-
vironments where sensors often disconnect due to limited network or energy
constraints. Specifically, intermittent connectivity leads to staleness; local up-
dates from some sensors may arrive late. Consequently, aggregating stale updates
could cause model divergence, as outdated parameters may conflict with recent
updates. To address this, we propose an asynchronous aggregation method that
incorporates delayed updates rather than discarding them.

For a client i with a local model, wi delayed by ti rounds, its contribution to
the global model is scaled as;

wt+1
g =

∑
i∈S αti · wt

i∑
i∈S αti

(4)

where αt is a staleness discount factor.

PV-Aware Training Scheduling: Operating in extreme alpine environments
imposes strict constraints on the availability of energy to power the system to en-
sure uninterrupted operations. We propose an energy-aware training mechanism
to dynamically optimize model training, aggregation, and model transmission to
maximize efficiency and robustness.

More formally, each sensor operates under a strict energy budget and, there-
fore must balance energy consumption between model training, inference, and
communication. Given an energy (battery) level Ei at sensor i, the sensor sus-
pends training if the battery level drops below a threshold (Ei < Ethresh).
Additionally, the number of local training epochs is dynamically adjusted based
on current battery levels. Let ζ denote the epoch count, it can be computed as
follows:

ζi = ζmax × (
Ei − Emin

Emax − Emin
)γ (5)

where ζmax is the maximum allowed training epochs, Emin and Emax define
the operational battery range, and γ is a decay parameter that controls how
aggressively training is reduced as the battery levels deplete.

Hybrid Network Orchestration: Considering the intermittent and bandwidth-
limited nature of LoRaWAN and cellular 4G/5G networks in alpine regions, we
implement an energy-latency tradeoff model to dynamically select the optimal
communication strategy. The hybrid network orchestration (HNOcomm) evalu-
ates whether a sensor should transmit model updates immediately or defer based
on energy availability and network conditions:

HNOcomm = argm∈4G/5G,LoRaWAN (
dm
Em

+ λLm) (6)

where dm is the data transmission cost, Em is the energy budget required for
transmission, and Lm is the expected latency in mode m. λ is a latency penalty
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factor for prioritizing low-latency communication when immediate updates are
required. Algorithm 1 outlines the steps involved in the training of EA-FL.

Additionally, we employ dynamic update transmission, where updates are
locally aggregated and only sent when;

Ei > Ethresh and Lm < Lmax (7)

Energy Model: To optimize model transmission, we define an energy model
that quantifies the cost of transmitting model updates over different networks.
The total energy consumption Em(n) required to transmit a payload of n bytes
over network mode m is given by:

Em(n) = n · Ebyte(m) + Ttx(m) · Pidle(m) (8)

where Ebyte(m), Ttx(m), and Pidle(m) are the energy required to transmit
one byte, transmission duration, and power consumption during idle states for
network m, respectively. For example, transmitting a 100 KB model over 4G
consumes 1.2J compared to 0.08J over LoRaWAN.

Algorithm 1: Federated Learning with Energy-Aware Optimization
Input: Communication rounds T , participating devices S
Output: trained global model wg

for each global round t = 1, . . . , T do
Server selects subset of active devices St ⊆ S;
for each device i ∈ St in parallel do

if Ei < Ethresh then
Suspend training and perform inference only;
continue;

Adaptive epoch selection: using EQ (5)
Local training using SGD: wt+1

i ← wt
i − η∇L(wt

i , Di)
Gradient pruning: Transmit top-k gradients;
Decide communication mode using Eq. 6
Transmit model update to edge server;

Server aggregates updates using staleness-aware aggregation using Eq. 4

4 Implementation and Experiments

We deployed our framework in the Austrian Alps involving three collar sen-
sors attached to free-grazing cows and evaluated it on two real-world use cases:
location prediction and anomaly detection.
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4.1 Use Case 1: Animal Location Prediction

Accurately tracking livestock movements in alpine regions is essential for mon-
itoring grazing patterns and keeping animals safe. However, continuous GPS
tracking is infeasible due to energy constraints and intermittent connectivity.
We frame animal location prediction as a time-series forecasting problem, where
we train a model to predict an animal’s future location based on historical sen-
sor data. More formally, given a sequence of past sensor measurements Xt =
[Latitude, Longitude, Altitude, ...], our goal is to predict next position;

X̂t+1 = f(Xt−l, . . . , Xt; θ) (9)

where Xt is the feature vector at time t, f is the prediction model (LSTM),
θ are the global model parameters learned via FL, and l is the lookback window.
Each sensor trains on its local movement data while periodically communicating
updates with the edge server for global model training (Section 3.2)

Model: We developed an LSTM-based model to predict future animal loca-
tions using historical GPS trajectories. The model architecture includes input,
output, and two LSTM layers (32 hidden units in each).

The model is trained using Adam optimizer (lr=0.001, weight decay=0.01),
dropout (0.2), and MSE loss. For each FL client, data is partitioned by (80%
train, 10% validation, 10% test) to preserve temporal integrity. Predictions within
5m of ground truth are labeled accurate.

Baselines: We compare our proposed framework with following baselines;

– Centralized: a conventional approach in which all training data is uploaded
to a central server for model training and serves as an upper bound.

– Standalone: a non-collaborative baseline, where each sensor trains a model
using only its own local data and acts as a lower bound.

– Standard FL: we compare our approach with the conventional synchronous
FL with standard averaging and without dynamic aggregation.

We define three key metrics to measure energy consumption, communication
efficiency, and prediction precision defined in Equations 10, 11, and 12, respec-
tively.

Etotal =

T∑
t=1

∑
i∈S

(Etrain(i, t) + Ecomm(i, t)) (10)

where Etrain(i, t) is the energy required for training a local model for ζi
epochs on i-th device, while Ecomm(i, t) (Eq. 8) represents the energy used for
communicated model updates

Commtotal =

T∑
t=1

∑
i∈S

|wt
i | (11)

where |wt
i | is the size (in bytes) of the update of the i-th device model in

round t.
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MAE =
1

N

N∑
j=1

||Xj+1 − ˆXj+1|| (12)

4.2 Use Case 2: Anomaly Detection

In livestock monitoring, anomalies such as irregular movements, prolonged in-
activity, or excessive motion can indicate potential health problems, predator
threats, or natural disasters. Moreover, due to their erratic nature and harsh
alpine environments, wireless sensor networks deployed in such environments are
more prone to experiencing outliers. This is primarily because these networks
collect real-world data using imperfect sensors, which are susceptible to external
factors such as aging and potential malfunctions [22]. We adopt an unsupervised
autoencoder-based anomaly detection model [23] to detect abnormal movement
patterns and trajectories. Given a sequence of past sensor measurements, our
goal is to identify instances with abnormally high reconstruction error:

At = I(||Xt − f(Xt−n, . . . , Xt; θ)|| > δ) (13)

where At represents the instance label (At = 1 if anomalous, 0 otherwise)
and δ is the threshold defined as; mean loss× d.standard deviation .

Data preparation: A trajectory is described by a chronologically ordered
sequence of past sensor measurements, where each pair of consecutive data points
constitutes a trajectory segment. Segments with a duration shorter than two
minutes or exceeding 30 minutes are excluded to ensure data consistency. Ad-
ditionally, to reduce GPS signal noise and improve reliability, a Kalman filter
[24] is applied as a preprocessing step. Eight features were extracted using both
individual trajectory segments and a four-hour sliding window (covering 12 seg-
ments, advancing one segment at a time):

– Distance: Segment length (km).
– Average movement: Euclidean distance between the most recent position

and the average of prior starting points in the window.
– Path-length: Cumulative segment length in the window (km).
– Summary statistic: Mean, median, 25th/75th percentiles, and standard

deviation of segment lengths (excluding min/max due to noise sensitivity).

We use the ensemble method to prepare the ground truth for the evaluation.
More specifically, a segment is classified as anomalous using the majority vote
based on the decision of the Optics [25], Abod [26], Isolation-Forest [27] mod-
els. Moreover, these identified abnormal segments should occur consecutively,
reflecting the temporal continuity of meaningful anomalies. This assumption is
aligned with scenarios such as a cow fleeing from a predator, sustaining an injury,
or a sensor malfunction.

Model: The autoencoder architecture consists of five layers with the config-
uration: [8, 6, 5, 6, 8]. The model architecture was optimized using grid search.
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Table 1: Predictive Performance comparison.

Method Location Prediction Anomaly Detection
MAE (m) Accuracy Energy (Wh) F1-score Precision Recall Energy (Wh)

Centralized 3.2 93.5 1700 91 93 89 1600
Standalone 8.1 72.4 32 65 68 62 27
FedAvg 4.5 89.1 81 83 81 85 67
EA-FL (ours) 3.8 92.2 36 89 91 87 30

8-bit integer quantization and quantization-aware training were applied to reduce
memory usage and enhance speed. The model is trained using Adam optimizer
(lr=0.001), dropout (0.05), and RMSE as reconstruction loss. We include addi-
tional metrics pertinent to anomaly detection, including F1-score, precision, and
recall, to evaluate the proposed framework against the baselines.
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Fig. 2: Training and convergence comparison.

5 Numerical Results

This section presents a detailed analysis of our proposed framework evaluated on
a real-world testbed consisting of three PV-powered collar sensors deployed in
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an alpine region in Austria. We analyze the framework’s performance in terms
of predictive performance, energy efficiency, and communication overhead for
animal location prediction and anomaly detection.

5.1 Prediction Performance

Table 1 presents the performance and energy efficiency of EA-FL against the
baselines for both use cases. EA-FL achieves a balance between accuracy and
energy efficiency, outperforming standalone and FedAvg baselines while almost
achieving the prediction accuracy of centralized training. More specifically, for
location prediction, EA-FL achieves MAE of 3.8m and 92.2% accuracy, closely
matching the 3.2m MAE and 93.5% accuracy of the centralized baseline while
consuming 47× less energy, and significantly outperforming the FedAvg and stan-
dalone baselines. Similar results are obtained for the second use case (anomaly
detection); EA-FL achieves an F1-score of 89 (91 precision, 87 recall), outper-
forming FedAvg and standalone by 6 and 24 F1 points, respectively. Although the
standalone baseline consumes less energy (27 vs. 30 Wh), it struggles to attain
a reasonable performance (F1-score: 65), demonstrating the impracticability of
isolated training due to data and computational constraints. Furthermore, unlike
FedAvg, EA-FL’s ability to transmit pruned updates and staleness-aware aggre-
gation at the edge reduces communication overhead by 60% while simultaneously
achieving 3.5− 7.2% better performance compared to FedAvg.

Fig. 3: Energy consumption breakdown of each method.

Figure 2 discusses the convergence and performance of these methods under
alpine network conditions. As highlighted in the figure, EA-FL converges (80%
Accuracy/F1) within 30 and 25 rounds for location prediction and anomaly
detection, respectively. This is considerably faster than FedAvg (60, 78 rounds)
due to staleness-aware weighted aggregation, which prioritizes fresh updates from
sensors with heterogeneous data.
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5.2 Energy Efficiency

Figure 3 compares the average energy consumption per sensor per training round,
divided into compute, communication, and idle energy consumption. As evident
from the figure, communication overhead is the most dominant factor influenc-
ing overall energy consumption, particularly for the Centralized baseline, where
all sensor data is transmitted to a remote server. Our EA-FL framework opti-
mizes energy consumption for both component computation and communication
by employing dynamic training round adjustment and model quantization cou-
pled with an optimal communication strategy. On the other hand, a Centralized
baseline incurs the highest consumption due to high communication overhead,
rendering this approach infeasible for resource-constrained environments.

For location prediction (left), EA-FL consumes 0.52Wh, resulting in a 48%
reduction compared to FedAvg. Although FedAvg reduces communication and
thus the communication cost compared to Centralized. However, the frequent
model synchronization leads to an increased overall energy drain (0.77Wh). Sim-
ilar results are obtained for anomaly detection (right). The lightweight autoen-
coder and hybrid network strategy result in 52% reduction compared to FedAvg.
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Fig. 4: EA-FL vs. FedAvg Communication & Energy Comparison.

5.3 Communication Overhead

In this experiment, we compare the communication overhead of EA-FL with
the FedAvg baseline. Figure 4 analyzes the per-round data transmission and the
cumulative energy consumption of both approaches. As shown in Figure 4 (left),
EA-FL reduces communication overhead by 56%; it transmits 100KB/round on
average compared to 250KB/round transmitted by FedAvg. The major reason
for the higher communication overhead for FedAvg can be attributed to the
full model updates, along with the frequent communication with the server.
In contrast, EA-FL minimizes redundant updates while prioritizing the most
informative parameters through dynamic update transmission.
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Fig. 5: Scalability analysis: impact on accuracy and energy consumption.

Figure 4 (right) presents the cumulative data transmitted over 100 training
rounds. FedAvg accumulates 24.4 MB of transmitted data, while EA-FL requires
only 11 MB, resulting in a 55% reduction. This directly translates into energy
efficiency; EA-FL consumes 36 Wh over the training period, compared to 83.4
Wh for FedAvg. The resultant energy efficiency extends the battery life of the
sensor by 58 days, an improvement of more than 21 days over FedAvg.

5.4 Scalability Analysis

To validate EA-FL’s applicability in large-scale environments, we emulated a 100
node network using the NS-3 simulator under realistic bandwidth constraints,
reflecting alpine network conditions (50% 4G availability, 5km LoRaWAN range).
We scaled the system from 10 to 100 nodes, and present the findings from this
experiment in Figure 5.

As evident from Figure 5, EA-FL consistently outperforms FedAvg both in
terms of accuracy and energy consumption. As more and more nodes are added,
the accuracy of both EA-FL and FedAvg declines, although EA-FL exhibits ro-
bust performance and experiences a lower drop in performance (7.6% vs. 23.7%).
Furthermore, similar results are obtained for energy consumption as we scale the
system. EA-FL’s energy consumption grows sublinearly, increasing from 6.8Wh
at 10 nodes to 181Wh at 100 nodes. On the other hand, FedAvg follows a steeper
trajectory, reaching 332Wh at 100 nodes (83% more than EA-FL). This signif-
icant drop in performance can be attributed to increased communication and
the inability to handle stragglers in the face of intermittent connectivity. Un-
like FedAvg, EA-FL maintains robust performance throughout due to quantized
updates, staleness-aware aggregation, and hybrid network optimization.

6 Conclusion

This paper presents EA-FL, an on-device FL framework tailored for PV-powered,
resource-constrained alpine livestock monitoring. EA-FL overcomes the limita-
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tions of existing FL approaches in extreme environments by introducing statelessness-
aware aggregation and hybrid network orchestration to ensure communication
and energy efficiency without compromising much on prediction performance.
Extensive evaluations conducted on a real-world testbed for two use cases, loca-
tion prediction and anomaly detection, show that EA-FL achieves comparable
performance to centralized learning while significantly reducing communication
and energy overhead by 56% and 68%, respectively. These findings highlight
EA-FL’s practical applicability for harsh, remote environments, where commu-
nication and energy constraints pose significant challenges.
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