
Edge Workload Trace Gathering and Analysis
for Benchmarking

Klervie Toczé
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Abstract—The emerging field of edge computing is suffering
from a lack of representative data to evaluate rapidly introduced
new algorithms or techniques. That is a critical issue as this
complex paradigm has numerous different use cases which
translate into a highly diverse set of workload types.

In this work, within the context of the edge computing
activity of SPEC RG Cloud, we continue working towards an
edge benchmark by defining high-level workload classes as well
as collecting and analyzing traces for three real-world edge
applications, which, according to the existing literature, are the
representatives of those classes. Moreover, we propose a practical
and generic methodology for workload definition and gathering.
The traces and gathering tool are provided open-source.

In the analysis of the collected workloads, we detect dis-
crepancies between the literature and the traces obtained, thus
highlighting the need for a continuing effort into gathering
and providing data from real applications, which can be done
using the proposed trace gathering methodology. Additionally,
we discuss various insights and future directions that rise to the
surface through our analysis.

Index Terms—Edge/fog workloads, Trace gathering, Edge/fog
benchmarking, Open-source.

I. INTRODUCTION

In the past years, the edge computing paradigm has been

envisioned as a way to solve some of the issues that are present

in the well-established cloud computing paradigm, such as the

need for lower latency and for lowering the amount of data sent

through the network [1]. Presence of the edge infrastructure

is considered as an enabler for an extremely wide range of

applications, and there exist numerous works describing what

all those applications are or could be [2]–[5]. Concurrently,

substantial research effort is made to provide solutions for the

challenges brought by the edge paradigm, such as resource

management over large sets of distributed and heterogeneous

devices, workload scheduling/orchestration, and security [6].
Therefore, it is crucial for the research pursued to evaluate

the algorithms and techniques created on relevant workloads.

Otherwise, there is a risk that the community meticulously cre-

ates theoretical solutions that might underperform in practice.

Klervie Toczé is supported by the Swedish national graduate school in
computer science (CUGS). Atakan Aral and Ivona Brandić are supported by
the CHIST-ERA grant CHIST-ERA-19-CES-005, and by the Austrian Science
Fund (FWF): projects Y904-N31 (RUCON) and I5201-N (SWAIN).

Getting access to such workloads is not easy, either because

they do not exist yet, the access to available applications is

restricted due to business interests, or privacy obligations and

the hardness of data anonymization impede the release of col-

lected data [7]. Consequently, most of the edge benchmarking

approaches in the literature [8] rely on traces obtained from

simulators, which conflicts with the purpose of benchmarking.

Above-mentioned accessibility problem motivates our work,

which aims to create realistic and relevant workloads for

the edge computing community to test and evaluate the new

algorithms and techniques. The long-term goal is to propose

an edge benchmark for the same purpose.

The need for more edge benchmarks has been already

highlighted and there are ongoing efforts [8]. For example,

for benchmarking edge computing platforms [9], application

performance over different edge platforms [10], or augmented

reality and wearable cognitive assistance applications [11].

Our work differs from these in that we focus on the applica-

tions rather than the hardware and that we follow a systematic

methodology to classify edge computing workloads and to

identify the most representative ones.

In this paper, we build on our preliminary work [12], which

presented a set of workload characteristics and a preliminary

characterization of three use cases. In this work, we deepen

the analysis of the edge computing application landscape

by considering 24 applications. This analysis enables the

definition of a small set of representative workload classes to

work with, instead of blindly trying to cover the wide range of

applications described in the literature. Then, we look at what

applications are currently available and relevant for the defined

workload classes and collect data from them. We make the

data traces publicly available, and present an analysis in this

paper. Finally, we discuss insights gained, how the collected

traces can be used as well as other issues. This work thus

covers the first two steps highlighted in Figure 1 towards an

edge benchmark for algorithms and techniques. The details of

these two steps as well as our contributions are provided in

the rest of this paper and illustrated in Figure 2.

Accordingly, the research questions considered in this work

are: 1) How can current and envisioned edge computing
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Fig. 1. Steps for creating an edge benchmark for algorithms and techniques.

applications be classified according to workload characteristics

relevant for evaluating algorithms and techniques? 2) How

do currently available workloads for those classes look like?

3) How can knowledge about current workloads be used for

pertinent evaluation of edge algorithms and techniques?

In order to provide answers to those questions, the following

are the contributions of this paper.

• An extended use case characterization study leading to

the definition of high-level workload classes.

• A generic methodology for trace gathering including an

instruction counting tool.

• Three open-source workload traces together with an anal-

ysis and discussion of these.

• A discussion on insights, challenges, and directions.

We believe that these contributions would aid researchers

and practitioners alike in better understanding current edge

workloads, as well as enabling the comparative evaluation of

edge algorithms and techniques for these workloads. Openness

and flexibility of the provided tools and methods would also

foster future classification attempts for edge workloads.

This paper is structured as follows: we present related

work in Section II. Then, in Section III, we characterize an

extended set of edge use cases and define four workload

classes. We describe the process of gathering traces from

available applications in Section IV, and analyze the results

obtained in Section V. Finally, we provide a discussion of our

findings in Section VI, and conclude the paper in Section VII.

II. RELATED WORK

While numerous surveys on the edge paradigm include

a part about edge applications (e.g. [5], [13], [14]), some

have a deeper focus on these. For example, Liu et al. [15]

propose an edge application classification according to three

aspects. The first one is the application properties, e.g. latency-

sensitivity or local context-awareness. The second is the type
of application, as edge computing can be used for traditional

applications (e.g. client-server) but also for emerging ones (e.g.

IoT). Finally, they consider the interaction between the edge

and the user, which can be for example computation offloading

or collaborative computing.

Ahmed et al. [16] studied 30 representative fog computing

applications described in the literature with regards to 17

different aspects, including why they use fog, the deployment

model used, type of access network, type of fog nodes, latency-

sensitivity, security, and workload characteristic (stable vs

dynamic). However, the above works only present existing or

envisioned applications, without studying them further. In this

work, we first analyze a subset of edge applications to then

move forward into looking at existing applications in order to

collect data that will enable further experimental studies.

Although still in its infancy, some efforts are ongoing in

the field of edge and fog benchmarking. Varghese et al.

[8] presented a systematic classification of edge performance

benchmarking in the three dimensions of (i) system under test

(infrastructure, e.g., CPU, memory, etc. and software platform,

e.g., orchestrators, schedulers, etc.), (ii) techniques analyzed

(optimization and deployment options), and (iii) benchmark

runtime (software and data characteristics). Surveyed bench-

marks date from as early as 2014. Silva et al. [17] proposed a

methodology for creating benchmarks for edge frameworks for

stream processing (e.g., Apache Edgent, Amazon Greengrass,

or Azure stream analytics). They used data from the New

York City taxi data set and CCTV footage from the university

of California San Diego as application workload. Those data

sets are only the input data and do not provide information

about the actual edge workload, as in this paper. Focusing

on deployment platforms and modes, McChesney et al. [10]

proposed the DeFog benchmarking suite. It includes six ap-

plications of different types that can be studied according to

cloud-only, edge-only or cloud-edge deployment. The different

applications are said to exhibit different characteristics but no

further analysis is provided, contrary to this work.

There are also efforts on generating traces for various

properties of edge infrastructures. Aral et al. [18] focused on

reliability and proposed the fusion of failure traces collected

from three relevant systems that represent different deployment

strategies proposed in the edge computing literature. More

recently, Kolosov et al. [19] discussed thoroughly the current

lack of comprehensive data sets for edge computing, which

is impeding benchmarking efforts. They provide a list of

attributes needed in the long term in those data sets and

propose the concept of workload composition for creating

comprehensive data sets based on the partial ones that are cur-

rently available. Our work contributes to providing compute-

related workloads, which according to their studies are one of

the least available at the moment.

III. WORKLOAD CLASSIFICATION

The first step towards an edge benchmark (see Figure 1)

consists in defining what type(s) of workload should be

included. Indeed, there is a large number of different edge

applications, but collecting traces for all the possible applica-

tions is practically infeasible, especially since most of them are

only envisioned at the moment, with no real implementation.

By gathering applications with similar characteristics into the

same workload class, the number of applications required for

trace gathering becomes substantially smaller.

A. Methodology and scope

To create the edge workload classes, the following method-

ology is used (illustrated in Figure 2, upper part). First, we

define the scope of the classes, i.e., for what purposes the

workloads will be used. This is critical as edge computing
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Fig. 2. Workload definition and gathering methodology.

work can be performed at different levels and with differ-

ent angles [19]. Secondly, we define characteristics that are

relevant to include when gathering workload data, based on

the scope. Finally, we look at use case descriptions in the

literature to analyze a range of use cases with regards to the

different characteristics. The aim was to identify the most

relevant characteristics for creating edge workload classes.

In this work, we focus on workloads that can be used for

evaluating edge algorithms or techniques, such as orchestration

or placement algorithms. The aim is to obtain knowledge about

the work that the edge system will have to execute in order to

provide relevant techniques for performing this execution in

an as efficient way as possible. The scope of this work thus

falls into the compute-related workload category as defined

by Kolosov et al. [19], and orchestrators and schedulers
categories as defined by Varghese et al. [8].

B. Extended use case characterization

We characterize an extended set of use cases from the edge

computing literature using the following methodology (from

our previous work [12]). Six characteristics are included: three

regarding resource demand (computation, communication, and

storage), latency requirement (previously called deadline1),

arrival type, and interarrival time. For each characteristic, two

nominal classes are defined to categorize the use cases (e.g.

high/low, short/long). The complete characterization of the 24

studied use cases is made available as a public archive [20].

The use cases include among others mixed reality, event-driven

applications, medical applications, and smart city use cases.

C. Workload classes

When studying which characteristics are put forward by the

literature describing the use cases in the above characterization

step, it appears that it is either the computation demand, the

communication demand or the latency requirements2. Even

if it is an important aspect in edge computing, not all edge

use cases have defined latency requirements, but all of them

require computation and communication resources. Therefore,

the workload classes are defined according to the possible

combinations of nominal classes for those two characteristics.

Focusing on only two characteristics also allows for a limited

set of classes, which is of interest since the number of

available edge applications for studies is currently limited.

Four workload classes, namely H/H, H/L, L/H, and L/L are

thus defined as shown in Table I.

TABLE I
DEFINITION OF EDGE WORKLOAD CLASSES.

Computation Demand

Low High

Communication Low L/L H/L

Demand High L/H H/H

IV. TRACE GATHERING

The second step towards an edge benchmark as shown in

Figure 1 is to gather workload data, e.g. workload traces.

A. Methodology

The trace gathering methodology is illustrated in the lower

part of Figure 2. To gather application data, it is first needed to

find applications that are available open-source and fit into one

of the defined workload classes according to their description

in the corresponding publications.

Once a selection of applications is made, these are tested

and analyzed in order to define what a task corresponds to in

the context of this particular application. A task should consists

of a) input data, b) computation to be performed on the input

data, and c) output data. It should be possible to isolate in the

edge application code where a task starts executing and when

1In this work, we renamed the deadline characteristic to latency requirement
in order to better reflect the fact that even if some use cases do not have a
formally defined deadline, there is an expectation for how long a task can
take to complete. The two categories for this characteristic are Close (the
expected latency ranges from tens of milliseconds to tens of seconds), and
Far (the expected latency is higher than tens of seconds).

2This does not mean that the application cannot have requirements on
multiple characteristics, but that one of them is emphasized.
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it finishes to collect data about its computational resource

demand. In this study, we consider that the application code

is available on the edge server (e.g. inside a container).

Based on the characteristics of Section III, the traces should

contain data about resource demand (especially computation

and communication), latency requirements, and task arrivals.

This trace gathering process is generic and can be used with

any application as long as it is possible to define a task and

instrument the code at the start and end of it3.

B. Selected applications

The following applications are selected for the different

workload classes, based on their description in the literature

and their open-source availability4:

• H/H: Mixed reality (MR-Leo)

• L/H: Forced alignment (Aeneas)

• L/L: Speech recognition (Julius)

1) Forced alignment: Forced alignment focuses on syn-

chronizing audio and text. For an input text and the corre-

sponding audio, it aims to find the time interval in the audio

that corresponds to a text fragment. The output is a synchro-

nization map between the text and audio. This application

type is already used in edge/fog benchmarking [10], as edge

computing increases its responsiveness. We use Aeneas5 as an

implementation of the forced alignment use case. It is an open-

source Python/C library that works on MacOS, Windows, and

Linux and supports a large variety of input/output file types.

2) Speech recognition: Speech recognition uses different

models and methods to translate spoken language into writing

or executable commands. Speech recognition tasks are gaining

popularity and can be executed on hardware with relatively

low computational power, depending on the model and meth-

ods used. Latency is the central requirement because speech

recognition should be done within a reasonable timeframe. We

use the Julius library6 as the implementation for the speech

recognition use case. It claims a low memory consumption for

its implementation and low computation demand [21], [22],

making it suitable for a broad range of systems under test.

3) Mixed reality: Mixed reality (MR) integrates virtual

components into a scene from the reality (in that case it is also

called augmented reality) or vice-versa (augmented virtuality).

An MR application can be decomposed into the following

steps: 1) Capture of the real scene, 2) Analysis of the real

scene to construct a 3D map or detect 3D objects inside the

scene, 3) Addition of the virtual elements or integration into

the virtual scene, and 4) Display on the end user device. In an

edge context, steps 2 and 3 are fully or partially offloaded to

an edge device. We use MR-Leo [23] as the implementation

for the mixed reality use case. It is an open-source prototype

that fully offloads steps 2 and 3 described above. The end user

3In this paper, we provide Inscount for instrumenting programs running on
Intel processors, other processor architectures will require other tools.

4At the time of the study, no open-source edge application for the H/L class
could be found.

5https://www.readbeyond.it/aeneas/
6https://github.com/julius-speech/julius

part of the application is an Android application and the edge

server part is a C program running on Linux.

C. Traces gathered

1) Gathering process overview: The input and output data

for each application example is isolated and its size measured

in order to get the communication demand. For the computa-

tion demand, it is measured in number of instructions using a

tool that we developed, called Inscount. Finally, information

about the task arrival time (relative to the start of the trace)

and the task deadline are also collected when this is relevant.

The traces are uploaded to Zenodo and made available open-

source [24] so that the community can use them for performing

further edge studies. As access to an edge infrastructure

deployment is complicated at the moment, the traces are

collected on research edge setups that are representative of the

type of devices that can be used as edge devices. More details

about these are provided on Zenodo. As the applications, input

data, and gathering tool are available open-source, it will be

possible to extend this study to future edge infrastructures.

2) Trace format: All the traces gathered in this work consist

of a comma-separated values (CSV) file for each application.

The available fields are: task timestamp, task id, application

type, computation demand (in number of instructions), com-

munication demand for the uplink (in bytes), communication

demand for the downlink (in bytes), and task deadline. The

task timestamp and task deadline fields are optional and are

only filled when relevant to the particular application.

3) The Inscount tool: In order to characterize the compu-

tational demand using a metric that is not dependent on the

actual CPU used during the gathering process (such as CPU

time), we opted for measuring instruction counts. While there

exist several profiling tools that can count the total number

of executed instructions within, for example, one function,

our application requires measuring instruction counts between

precisely defined points of program execution. Therefore, we

implemented our own instruction counting tool called In-
scount, based on the Pin [25] dynamic binary instrumentation

framework. The program to be traced must be recompiled to

insert calls to two dummy functions, which marks the start

and end points of instruction counting. The Inscount tool will

monitor for calls to these functions, and record the precise

instruction count for the corresponding interval of execution.

Note that, since instrumentation is performed on the binary

level, we can effortlessly count instructions in, e.g., third-party

libraries, for which source code may not be available. The

tool also supports tracing multi-threaded code by serializing

execution on the basic block level. In the interest of open

science, we make the Inscount tool available as open source7.

4) Aeneas: For collecting the trace for the Aeneas appli-

cation, 20 out of the 36 example scenarios included in the

application are randomly selected. These consist in different

variants of text input file and output format for the same audio

file (a 53.240 seconds recording of the Sonnet I by William

7https://gitlab.liu.se/ulfka17/inscount
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Shakespeare). Each selected example is run 30 times. A task

for Aeneas consists in taking as input an audio file and a text

file, performing the forced aligment algorithm and returning an

output file containing the alignment. A task is sent whenever

needed and will take more or less time to complete mostly

based on the length of the text/audio to align. Therefore, the

trace does not include task timestamp or task deadline, as those

are not relevant for Aeneas.

5) Julius: The Julius trace is collected using 20 audio

files from the spoken Wikipedia corpora8 as input, containing

1314 articles in 2862 audio files. Among these files, 20

were selected at random without duplicates. Each input was

run 30 times on four servers. The order of execution was

shuffled after each iteration. A task for Julius consists of

an audio file as input, on which the speech recognition is

performed and outputs the recognized sentences to the console.

Similar to Aeneas, a task is sent whenever needed, hence the

trace does not include task timestamp and deadline. For the

communication downlink, the size (in bytes) of the original

text from the corresponding article coming with the spoken

Wikipedia corpora is used. This is due to Julius outputting

status and progress reports to the console intermixed with

the detected sentences and words, hence making this output

different from the one the user would expect to receive.

Choosing the original text is the optimal output Julius can

produce. Erroneously detected words would not change the

output size drastically and the original text is, therefore, a

good approximation.

6) MR-Leo: The MR-Leo trace is gathered using three

different input videos9. The length of each video is one

minute but they are looped to allow for trace gathering for

different video lengths. The three videos are run five times

each. The actual use case is live video streaming, however

it is impractical to gather data for it due to the slow down

incurred by the Inscount tool. A task for MR-Leo consist in

a video frame that has to be analyzed by the MR framework

and the output is an MR-enhanced video frame. Video frames

arrive at a defined rate and should be analyzed before the next

one comes in order to avoid delay that will degrade the user

quality of service [26]. Task timestamp and task deadline are

thus included in the trace.

V. TRACE ANALYSIS

We now analyze the traces collected in Section IV and

present insights about the selected application workloads.

A. Task definition

With regards to how a task is defined for each application,

we identify two groups according the collected traces. The first

group includes the Aeneas and Julius traces and corresponds

to the applications where there are no set requirements yet for

when a task is sent and how long it should take to perform.

This is because there is no commercial product using these

8https://nats.gitlab.io/swc/
9Available at https://gitlab.liu.se/ida-rtslab/public-code/2019 mrleo video

and https://gitlab.liu.se/ida-rtslab/public-code/2019 MRLEO charac

TABLE II
METRIC SUMMARY (MIN-MAX) FOR DIFFERENT APPLICATION TRACES

# instructions
per input byte

Input size in bytes Output size in
bytes

Aeneas 2113–208139 426735–427467 324–32130

Julius 52676–62911 660132–10325884 1482–76396

MR-Leo 3605–5629 41000 41000

specific applications currently, to the best of our knowledge.

The second group consists of the MR-Leo trace, where there

are expectations on task arrivals and task deadlines in order

to maintain a high QoS.

B. Computation

Box plots of the number of instructions measured per task

are generated. We note that although Aeneas and Julius were

selected for workload classes having a lower computational

demand compared to MR-Leo, the situation is the opposite

after analyzing the traces. As the three traces were gathered

using different type of input files having varying sizes, it is

however unfair to compare the instructions numbers as such.

For instance, taking the full video as a single task for MR-Leo

would yield a significantly higher number of instructions per

task. Therefore, we choose to instead present the number of

instructions per input byte in order to visualize how intensive

the computation is for each byte of input data received at the

edge. These results are presented in Figures 3, 4, and 5, where

different examples executed are shown on the x-axis. Table II

shows a summary of the results, including the minimum and

maximum values over all examples.

This metric shows that how compute-intensive an applica-

tion is actually depends on the scenario it is used for. This

is especially visible in the Aeneas case where the number of

instruction per input byte can vary by almost a factor 100

depending on the example considered. Julius and MR-Leo, on

the other hand, show a more stable behavior with a lower

variation between the different examples selected. Another

observation is that the difference in number of instructions

measured in different runs using the same data is very low for

Aeneas and Julius, while it is higher for MR-Leo. This is due

to the internal mechanisms of the applications and whether

they handle the same input in a deterministic way.

C. Communication

With regards to communication, the traces record the size

of the required input, as well as of the output for the three

applications considered. Figures 6,7, and 8 present our results

and Table II summarizes the ranges for the input and output of

the different applications. For Aeneas and Julius, the input and

output sizes depend on the example considered (e.g. different

files or file formats are used) whereas MR-Leo has a constant

input and output size as all video frames have the same size

in the examples chosen.
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Fig. 3. Number of instructions per input byte measured for Aeneas tasks.

Fig. 4. Number of instructions per input byte measured for Julius tasks on
the four different servers.

Fig. 5. Number of instructions per input byte measured for MR-Leo tasks.

An important observation is that the range of input or

output sizes is broad (up to almost 100-fold for the Aeneas

output), thus highlighting the important role the actual example

selected will have on how the load of these applications will

look like. Depending on the input chosen, the same application

could appear as being very communication-intensive or quite

the opposite. MR-Leo has no range as all examples tested

had the same resolution, but similar behaviour is expected

if testing with other video resolutions. Another observation

is that applications such as Aeneas or Julius are a lot more

communication-intensive in the uplink than in the downlink

(e.g. 210 times more for the Julius task #14), as transferring

audio files is heavier than text files.

Fig. 6. Size of input and output data for Aeneas tasks.

Fig. 7. Size of input and output data for Julius tasks.

Fig. 8. Size of input and output data for MR-Leo tasks.

VI. DISCUSSION

Along the course of this work, various insights were gained

related to edge workloads and how to use them. In this section,

we discuss these as well as current challenges and future

directions for an edge computing benchmark.

A. Edge workloads in theory and in practice

The first important insight from our study is that there is

currently a gap between how applications are described in the

literature and how the (rare) implementations available behave.

This is visible when looking at how computationally-intensive

the different applications selected should be and how actually

intensive they were, which did not completely match. The

same behavior is observable for the communication intensity,
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where the same application could be classified as intensive or

not depending on the test example chosen. Obviously, this is

highly dependent on the applications chosen for trace gath-

ering and it can very well be that those specific applications

behave in a specific way that might not be representative for

how this application type will behave generally in the future.

However, there is currently a scarcity of edge computing

applications that are available open-source; thus, our findings

apply to the current state of the technology.

Therefore, it is of high importance to encourage the de-

velopment and open-source release of different types of edge

applications in order to increase the number of traces available.

This would provide an accurate picture of the edge workloads

to researchers or practitioners working on algorithms or tech-

niques to provide an efficient handling of those workloads.

An inaccurate workload picture based on only description of

how use cases are expected to behave could potentially lead to

research effort not focusing on the actual bottlenecks, which

is a waste of time and resources for the community and could

even impede the deployment of the edge paradigm.

Our generic trace gathering methodology is designed in a

way that it can be easily reused when more applications are

available. This will enable the community to provide traces

that correspond to the high-level workload classes and can be

included in a future edge benchmark.

B. Towards edge benchmarking

This work is conducted within the scope of the edge

computing activity of SPEC Research Group Cloud. It is a

part of an ongoing effort to provide an edge benchmark that

can be used to evaluate edge algorithms and techniques on a

set of workloads exhibiting different characteristics of inter-

ests, i.e. from the different workload classes proposed. The

approach that is taken was to select one application per class,

as they, according to the available literature, should exhibit

those different characteristics. However, the trace gathering

and analysis performed shows that this approach does not

produce the expected results, as the same application can

produce workloads corresponding to different classes based

on the input considered. Therefore, instead of selecting one

application per workload class, it is advisable to select both

applications and appropriate sets of input for each workload

class when creating a future benchmark. Doing so will also

allow for different type of applications to be available for each

workload class, which increases the benchmark relevance.

C. Leveraging workload traces

The traces gathered in this work focus on providing

compute-related data about tasks that are sent to the edge for

execution. They can be immediately used for benchmarking

algorithms that are proposed for resource management in edge

computing paradigm. These may include, schedulers, replica-

tion engines, resource provisioning, resource allocation, etc.

The traces can be, for example, input to the workload generator

of a simulator to evaluate a task placement algorithm.

Nevertheless, additional data sets that cover attributes that

relate to storage, communication, user location and mobility,

etc. are required for getting the full picture of an edge

workload. However, it is currently not possible to gather all

those attributes as the edge systems that would enable such

gathering are not yet available. Kolosov et al. [19] propose the

concept of workload composition in order to construct relevant

data sets in the meantime, where actual full-fledge data sets are

not available. The work presented here fits into this idea and

enlarges the body of the compute-related data that is one of

the those with fewest available traces. As a practical example

of workload composition, Aral et al. [27] combined real-world

mobility traces from electric vehicles with the simulated edge

computing performance traces in their study on running data

analytics on mobile devices and vehicles. The availability of

more traces will promote such joint uses of data sets for a

more complete picture of the edge computing ecosystem.

Another possibility to leverage the traces provided in this

paper is by applying the transfer learning concept. Data sets

that are available to the research community are more common

for the distributed systems that are architecturally similar to

edge computing but are more established, such as cloud com-

puting or peer-to-peer systems. Hence, an interesting solution

to data set scarcity is to adapt data sets from closely associated

domains and emulate edge computing data traces. There exists

a comprehensive body of knowledge for domain adaptation

in the context of transfer learning [28]. Transfer learning is

typically used to improve a learner in the target domain (e.g.

edge computing) by transferring information from a related

source domain (e.g. cloud computing). Most transfer learning

techniques generate an adapted training data set from the

source domain data that is suitable for or representative of the

target domain. This approach has shown to be highly effective

in many application areas summarized in literature reviews

[28], [29]. One idea for further studies is to use the traces

collected in this work to validate the transfer learning concept

applied to edge computing.

D. Open Issue: Upscaling the benchmarks

Above described techniques are intended to leverage work-

load traces vertically, that is generating additional traces for a

single instance of an edge computing application. However,

a particular aspect of these applications is that they are

usually replicated in many geographically distributed edge

nodes to exploit proximity to data sources and consumers.

Consequently, each instance of the application behaves differ-

ently based on the local conditions such as available compute

resources or input data characteristics. These non-trivial dis-

crepancies should also be reflected in benchmarks.

Consider, for example, the recent application of real-time

video analytics to be deployed at smart traffic lights in the

city of Vienna [30]. This work, which aims at improving

traffic safety by warning drivers about pedestrians and cyclists

in their blind spots, has been already tested in a junction,

where substantial workload traces were collected. Large-scale

performance of the application at 1343 traffic lights throughout
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Vienna is yet to be evaluated. The questions is then how to

create semi-artificial data sets from a single traffic light for

others considering their local characteristics. These charac-

teristics might include pedestrian and vehicle traffic density,

which affects the data frequency, or 5G coverage, which affects

the communication latency.

VII. CONCLUSION

In this paper, we focus on the first two steps required to

create an edge benchmark. First, we perform an extended

characterization of a variety of edge use cases and propose

workload classes in order to help categorizing the vast number

of edge use cases. Then, we select three applications that, ac-

cording to the literature, correspond to three different workload

classes and gather data related to their workload, which we

make available open-source. An analysis of the data collected

clearly demonstrates that referring only the literature is not

suitable for classifying the rare edge applications available for

study and that one application can exhibit characteristics from

different workload classes based on the inputs considered.

Therefore, more application development, trace gathering,

and analysis (e.g., statistical) is needed to provide data sets

corresponding to the high-level workload classes.

Future extension possibilities include the gathering of traces

for more applications with the goal of creating an edge

benchmark providing relevant data input for researchers and

practitioners who need to evaluate their edge algorithms or

techniques. This will require to develop Inscount-like tools

for other processor types. Other directions include applying

workload composition and transfer learning to provide data

sets covering more attributes or application scenarios.
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