
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, MAY 2025 1

Decentralized Edge Workload Forecasting
with Gossip Learning

Alessandro Tundo, Federica Filippini, Francesco Regonesi, Michele Ciavotta, and Marco Savi

Abstract—Edge computing has emerged as a crucial paradigm
for addressing the growing demands of interconnected devices
and large-scale mobile applications by relocating computation
and storage services closer to end-users. Edge workloads are
inherently volatile and challenging to forecast due to their
dependence on factors such as human mobility patterns and
geographically-distributed infrastructure, combined with the dy-
namic nature of edge nodes. Traditional centralized approaches
to workload forecasting are inadequate in the context of de-
centralized and failure-prone edge environments. To address
this challenge, this paper investigates workload forecasting using
Gossip Learning (GL), an asynchronous peer-to-peer learning
protocol. GL allows for the training of forecasting models in
a fully-decentralized manner, thereby mitigating single point
of failure risks and enhancing overall system robustness. We
extended the original protocol across multiple dimensions to
improve convergence, reduce communication overhead, and en-
hance resilience to failures. We evaluated the proposed approach
through extensive simulations; the obtained results demonstrate
its effectiveness with respect to classical methods, rendering it a
promising solution to enhance load balancing and task offloading
strategies at the edge, thereby ensuring Quality-of-Service (QoS)
and reducing Service Level Agreement (SLA) violations.

Index Terms—Edge Computing, Workload Forecasting, Gossip
Learning, Function-as-a-Service, Machine Learning

I. INTRODUCTION

Edge computing has rapidly evolved to complement and
extend cloud computing, addressing the increasing demands
of interconnected devices and large-scale mobile applications.
This paradigm shifts computation and storage services closer
to users by positioning them at the network edge, thereby
meeting the requirements for ultra-low latency, location aware-
ness, optimized bandwidth allocation, reduced execution costs,
and lower energy consumption [1]. However, edge computing
also introduces unique challenges due to its dynamic and
geographically-dispersed nature. Edge workloads are partic-
ularly volatile and difficult to predict as they depend on
several factors like the interaction between human mobility

Manuscript received on May 13, 2025.
This research was partially funded by the European Union - Next

Generation EU under the Italian National Recovery and Resilience Plan
(NRRP), Mission 4, Component 2, Investment 1.3, CUP E83C22004640001,
partnership on “Telecommunications of the Future” (PE00000001 -
program “RESTART”), and by the Austrian Science Fund (FWF)
10.55776/PAT1668223 and 10.55776/P36870.

Federica Filippini, Francesco Regonesi, Marco Savi, and Michele Ciavotta
are with the Department of Informatics, Systems and Communication, Uni-
versity of Milano-Bicocca, Milan, Italy (e-mail: {name.surname}@unimib.it).

Alessandro Tundo is with the Institute of Information Systems Engi-
neering, Technische Universität Wien, Vienna, Austria (e-mail: alessan-
dro.tundo@tuwien.ac.at).

Alessandro Tundo and Federica Filippini equally contributed to the
manuscript.

patterns and a geo-distributed computing infrastructure [2]
and the particular application scenario (e.g. IoT data inges-
tion and processing [3]–[5], Machine Learning (ML) model
inference and training [6]–[8], or virtual network functions
(VNFs) execution [9]–[11]). Moreover, edge nodes are often
heterogeneous, with limited capacity, and tend to join and
leave the network due to unpredictable link and node failures.
Consequently, defining optimal resource allocation and task
offloading policies to guarantee Quality-of-Service (QoS) and
avoid Service Level Agreement (SLA) violations at runtime
is significantly more complex compared to centralized cloud
scenarios. Furthermore, security and privacy concerns must
be carefully addressed at every decision level, as they are
crucial in an ecosystem with a broader attack surface than
cloud systems [1].

Research in this area has aimed to tackle these challenges by
proposing peer-to-peer (P2P) solutions for managing network
dynamics arising at the edge [12]. As for workload prediction,
over the last decade, a variety of techniques have been pro-
posed within the context of cloud computing [13]. However,
little effort has been put to adopt (variants of) these techniques
to P2P-based edge computing. ML-based workload forecasting
using P2P (or decentralized) learning can be extremely advan-
tageous in a fully-decentralized edge environment [14]: this
approach takes advantage of contributions from different nodes
to construct a forecasting model tailored to each node. Unlike
a model trained only on a node’s local data, this method offers
better generalization, and preserves privacy while minimizing
bandwidth utilization.

Among the variants of P2P learning, Gossip Learning (GL)
stands out as a decentralized, asynchronous approach [15].
In GL, peers (i.e., participant nodes) communicate directly to
update their models [16], eliminating the need for a central
system to aggregate locally-trained models, as required in
other distributed learning approaches such as Federated Learn-
ing (FL) [17]. This feature makes GL particularly suitable for
P2P edge environments, as it eliminates the risk of a single
point of failure and leverages the existing P2P network to build
the workload forecasting model.

Moreover, GL addresses the challenges in developing such
a model for a geographically-dispersed environment with
unreliable nodes by allowing asynchronous model updates.
This method ensures that information eventually disseminates
throughout the entire edge network [15]. In addition, by incor-
porating contributions from various nodes, each node’s model
can capture a wide range of workload patterns, achieving a
balance between generalization and specificity. This balance is
essential in a decentralized learning context, allowing nodes to

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2025.3570450

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, MAY 2025 2

handle out-of-distribution traffic patterns effectively. Finally, a
well-generalized model can be adopted by new nodes joining
the network, even if they lack historical data to develop their
own models.

This paper introduces Gossip Learning as a solution for
decentralized workload forecasting in edge environments.
While our proposed method is generally applicable to a
variety of edge computing scenarios, we adopt, as a motiva-
tional example, DFaaS [18], a decentralized edge environment
that implements the serverless Function-as-a-Service (FaaS)
model. In this context, we focus on forecasting the workload—
a critical step towards enabling improved responsiveness,
resource scaling, and distribution at the edge [3], [18]–[22].

We enhance the GL protocol to better align with the char-
acteristics and challenges of decentralized edge computing. In
particular, we propose a performance-based approach inspired
by PENS [23] to selectively merge models from neighbors,
increasing the robustness. We also propose a novel merge
strategy, Age-Weighted Overwrite, which uses the model age
to probabilistically decide model overwrites. In addition, we
explore FixedUpdates and EarlyStopping criteria to prevent
overfitting. Moreover, we implemented and publicly released
a discrete-event simulator capable of simulating GL with
various network topologies and stopping criteria, which is a
feature not available in other simulators [24], [25]. An open-
source prototype of the simulator is publicly accessible [26].

Finally, we conducted an extensive empirical evaluation
to assess the applicability of GL for workload forecasting
in P2P edge topologies. In particular, we considered five
dimensions: (i) the performance of GL in this domain, com-
pared to classical approaches (i.e., offline-only, centralized,
and Federated Learning); (ii) the impact of GL parameters
on performance; (iii) the scalability and network overhead of
GL; (iv) the robustness of GL to node failures; (v) the demand
for computational resources during training. Our experiments
leveraged both real workload traces from FaaS applications
and synthetic instances. All experimental materials are publicly
available on Zenodo [27] and on GitHub [26].

The rest of the paper is organized as follows. Section II
provides background information that introduces the Gossip
Learning protocol. Section III describes our motivational sce-
nario and the approach we propose to tackle the problem of
decentralized load forecasting. Section IV provides details on
the discrete-event simulator. Sections V and VI present details
of the experimental setup and empirical evaluation. Section VII
discusses the related work. Finally, Section VIII outlines the
conclusions and possible future research directions.

II. BACKGROUND

Learning in distributed systems, where data resides on
distinct nodes, presents a challenge due to network and com-
putational scalability limitations, and privacy concerns [17].

Federated Learning (FL) [17] was initially proposed by
Google as a means of training the model underlying its
predictive keyboard (GBoard) while preserving user privacy. In
FL, model training is distributed across multiple workers, each
holding a private local dataset. A central server coordinates

the training process by periodically selecting a subset of
workers, elaborating the latest global model and transmitting
it to them. The selected workers perform local training on
their respective datasets for a predefined number of epochs and
return model updates—typically in the form of weight updates
or gradients—to the server. The server then aggregates them
to refine the global model before the next training round.

FL is currently widely adopted for tasks outside the original
scenario, including energy consumption forecasting [28], base
station traffic forecasting [29] and many others [30]. Never-
theless, a single aggregation point (i.e., the main server) is still
required to reconstruct the global model, which is challenging
to achieve in decentralized edge computing scenarios where
nodes are generally considered unreliable due to unpredictable
failures (e.g. in network links) [1].

Gossip Learning is an optimization framework for the
training of ML models in decentralized environments [31].
In GL, all nodes act as equal peers, each independently
training a local ML model using its private dataset. Instead of
relying on a central server, nodes periodically exchange model
updates with randomly-chosen peers in a decentralized, peer-
to-peer manner. Through these exchanges, models gradually
incorporate knowledge from different nodes as propagated
across the network. Unlike Federated Learning, where a single
global model is aggregated, Gossip Learning results in a
diverse set of models—one per node—each shaped by the
specific sequence of updates it has received.

This approach is particularly well-suited for edge envi-
ronments, as it fully leverages the decentralized nature of
the system without requiring a central synchronization point.
Additionally, GL has been shown to achieve performance on
par to or even surpassing that of FL [15], while offering
enhanced robustness. By eliminating a single point of failure,
GL mitigates the vulnerabilities associated with centralized
architectures, making it more resilient to node failures and
network disruptions.

In this work, each node participating in the GL protocol
must implement a defined interface that supports two primary
operations, formally defined by the asynchronous procedures
MainLoop and OnReceiveModel, as detailed in Algo-
rithm 1. The MainLoop routine periodically disseminates
model updates w along with contextual information c (e.g.
the node’s univocal identificator) to a subset of its peer
nodes1. The OnReceiveModel procedure is triggered upon
receiving an update from a peer node, integrating the received
model with the local one, fine-tuning it using the node’s
dataset, and updating the context2.

The following sections (II-A and II-B) provide further
details about peer selection and merge strategies.

1Model updates may consist of the full set of model parameters, a subset
of it, or the model’s gradient computed with respect to local data. This work
adopts a representation where updates refer to (a subset of) model weights,
aligning with the implementation considered in this paper.

2For clarity and generality, context updates are explicitly represented by
the UpdateContext procedure in Algorithm 1. However, they may also be
handled within MERGE or TRAIN, depending on the specific implementation.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2025.3570450

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, MAY 2025 3

Algorithm 1 Gossip Learning routines
1: async procedure MAINLOOP()
2: while true do
3: peers ← SELECTPEERS()
4: SEND((c, w), peers)
5: wait(∆t) ▷ ∆t is the model transmission time
6: end while
7: end procedure

8: async procedure ONRECEIVEUPDATE(cr, wr)
9: (c, w)← MERGE((c, w), (cr, wr))

10: (c, w)← TRAIN((c, w), Dl) ▷ Dl is the node dataset
11: c← UPDATECONTEXT((c, w), (cr, wr), Dl)
12: end procedure

A. Peer Selection

Indiscriminately broadcasting model updates to a large
number of neighbors is inefficient and impractical under band-
width constraints. In GL, nodes—particularly those with high
connectivity—must carefully select a subset of peers for model
transmission to balance communication overhead and learning
efficacy. The selectPeers routine plays a crucial role in
managing the trade-off between exploration and exploitation in
decentralized learning. It is responsible for peer discovery [32]
and selecting one [15] or, rarely, more peers [33] to send the
local model (unicast vs. multicast).

Peer selection strategies can be broadly classified as static or
dynamic. Static strategies maintain a fixed set of target peers
throughout training, ensuring stable communication patterns
but potentially limiting convergence speed, reliability, and
model diversity. In contrast, dynamic strategies adaptively
select peers at each iteration, introducing variability that may
enhance learning efficiency.

The effectiveness of a peer selection strategy depends on
the underlying network topology and application requirements.
In fully-decentralized settings, random peer selection provides
robustness to node failures [34]. Other methods incorporate
topology-aware selection and node prioritization based on
factors such as model similarity, learning progress, or network
proximity [35]–[37], improving convergence speed and reduc-
ing communication overhead. As specified in Section III-C,
in this paper we adopt a strategy called Active-Peer Random
Selection, due to its high robustness to failures.

B. Merge Strategy

In distributed/decentralized learning, the Merge strategy
governs how local models are integrated, shaping both con-
vergence dynamics and model diversity. These strategies can
be classified based on the nature of exchanged data, the
aggregation function employed, and their adaptability.

Parameter-based merging aggregates model parameters
through methods such as simple or weighted averaging, en-
suring stability but often struggling in non-iid settings, where
statistical heterogeneity degrades performance [38]. Notable
examples include Overwrite, and Simple Average [15]. In
Overwrite, the received model completely replaces the current
one. In Simple Average, the arithmetic mean of the received

Fig. 1. The motivational scenario representing a set of telecommunication
towers equipped with computing and storage capabilities, namely, edge
computing nodes (ENs). Each EN hosts an instance of the DFaaS platform,
initially proposed by Ciavotta et al. [18], and participates in the GL protocol.

model weights and the local model weights is computed to
mitigate the risk of complete information loss.

Adaptive merging dynamically adjusts aggregation
weights based on inter-model similarity, thereby
improving generalization in heterogeneous conditions [15].
Conversely, gradient-based merging transmits only gradient
updates—exemplified by Decentralized Stochastic Gradient
Descent (DSGD)—offering communication efficiency
but introducing gradient staleness, which may hinder
optimization [39]. While research on GL often draws from
FL, a direct transfer of insights remains problematic, as FL
assumptions do not seamlessly extend to GL settings. A
critical gap persists in the literature, underscoring the need
for targeted investigations into the behaviors emerging within
GL frameworks.

As specified in Section III-C, in this paper we consider,
in addition to Overwrite and Simple Average, two strategies
named Age-Weighted Average, firstly introduced in [15], and
the novel Age-Weighted Overwrite.

III. WORKLOAD FORECASTING WITH GOSSIP LEARNING

This section presents our motivational scenario for workload
forecasting in decentralized edge environments. Details about
how the GL protocol was adapted to align more closely with
the specific characteristics of the problem at hand are then
provided and discussed.

A. Motivational Scenario

Several pertinent use cases for advanced computation at the
edge of the network have been identified in the literature.
These include mobile augmented reality (MAR) [16], [40],
traffic safety applications [41], and IoT data processing [3]–
[5] just to mention a few. A reference scenario is defined
herein, as illustrated in Fig. 1, which depicts a network of
telecommunication towers equipped with computing and stor-
age capabilities, thereby functioning as edge computing nodes

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2025.3570450

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, MAY 2025 4

(ENs). Each EN hosts an instance of the DFaaS platform, as
initially proposed by Ciavotta et al. [18].

DFaaS (Decentralized Function-as-a-Service) is a peer-to-
peer edge computing platform that implements the Function-
as-a-Service paradigm, enabling each node to execute server-
less functions in response to client requests. Clients, such as
smartphones or other smart devices, initiate function execution
requests by selecting the node with the strongest perceived
signal—typically the nearest one. When a node’s predicted
incoming workload exceeds its available computing resources,
the node dynamically offloads excess requests to the closest
underutilized nodes, thereby mitigating congestion and opti-
mizing resource utilization.

A defining characteristic of DFaaS is the absence of a cen-
tralized coordinator. All nodes operate in a fully-decentralized
manner, functionally identical and equal in their interactions.
Consequently, no master node governs network topology or
orchestrates task distribution. Instead, a P2P service discovery
protocol enables nodes to autonomously identify and commu-
nicate with one another, irrespective of the underlying physical
network topology or technology. This dynamic discovery
mechanism establishes an overlay network that facilitates
direct node-to-node communication.

Within this overlay network, DFaaS nodes continuously
exchange information regarding their operational state, latency,
and network topology changes. Latency data, in particular,
enables each node to identify and interact with a subset
of peers for which communication latency remains below a
threshold, ensuring proximity-based workload distribution.

B. Gossip Learning for Workload Prediction in DFaaS

Gossip Learning emerges as an ideal framework for training
the workload prediction models of DFaaS nodes, aligning
naturally with the platform’s decentralized architecture. Each
DFaaS node relies on an individual prediction model to
estimate its incoming workload, a critical factor in maintaining
efficient resource allocation. An inaccurate model—whether
underestimating or overestimating future loads—can lead to
significant inefficiencies: underestimation results in congestion
and request rejections, degrading the QoS, while overesti-
mation leads to unnecessary offloading, underutilizing local
computational resources.

A purely local training approach, based solely on a node’s
historical workload data, may fail to capture the spatio-
temporal correlations in workload variations across neighbor-
ing nodes, particularly in mobility-driven edge applications.
Given DFaaS’s inherently peer-to-peer nature, conventional
Federated Learning techniques that rely on centralized aggre-
gation are ill-suited due to the risk of vanishing variance—
a phenomenon in which the progressive loss of diversity
causes models to converge prematurely to suboptimal solu-
tions. Even hybrid approaches that employ leader election
mechanisms [42] would introduce unnecessary computational
overhead, disrupting the platform’s asynchronous operation.

In contrast, GL seamlessly integrates with DFaaS’s over-
lay network, enabling decentralized and continuous model
refinement as nodes asynchronously exchange model updates

Algorithm 2 Modified OnReceiveModel for multi-model
merging

1: procedure ONRECEIVEMODEL(cr, wr)
2: lr ← GETLOSS(Dl, wr) ▷ Evaluate model on local data
3: cache.store((cr, wr, lr))
4: if cache.size() > T then:
5: models ← cache.get best n(N )
6: w ← MERGE(models)
7: w ← TRAIN(w,Dl)
8: c← UPDATECONTEXT(c, w,Dl)
9: cache.clear()

10: end if
11: end procedure

with their dynamically-discovered neighbors. The protocol can
be activated periodically (e.g. daily or weekly) or remain
continuously active. Continuous updates enhance adaptability
to workload variations by ensuring timely model adaptation,
but they also increase communication overhead [43].

C. Extensions to the Gossip Learning Protocol

The GL protocol described in Section II is extended along
five key dimensions: 1) We introduce an approach inspired by
PENS [23] that enables the simultaneous merging of multi-
ple models, facilitating more effective knowledge integration;
2) We design the Active-Peer Random Selection mechanism,
which implements a multi-peer selection strategy seeking to
enhance convergence speed; 3) We propose the Age-weighted
Overwrite merge strategy, where the probability of overwriting
the current model is proportional to the age ratio between the
current and received models; 4) We investigate the role of
two stopping criteria—FixedUpdates and EarlyStopping—in
mitigating overfitting and ensuring stable model convergence;
5) Finally, we analyze the impact of a model compression
mechanism based on random sampling of network weights,
balancing communication efficiency and learning performance.

1) Configurable Number of Merged Models: We ex-
tend the vanilla GL protocol to support the simultane-
ous merging of multiple models, drawing inspiration from
the PENS (Performance-based Neighbor Selection) algo-
rithm [23]. PENS improves convergence in GL by prioritizing
model exchanges between peers with similar data distributions,
thereby mitigating challenges posed by non-iid data.

Following PENS, the OnReceiveModel procedure is
modified (see Algorithm 2). Instead of immediately merging
incoming models, each received model is first assessed on
local data and stored in a cache, potentially replacing a previ-
ous version from the same peer. When the cache accumulates
T 3 models, the N top-performing (lowest loss) models are
selected, merged, and the resulting model is trained locally.
Finally, the cache is cleared to prevent stale updates and
counteract vanishing variance.

2) Active-Peer Random Selection: While similarity-based
selection (like the one implemented in PENS [23]) performs
well in stable environments, it struggles in dynamic settings
where network topology and workloads shift over time. To

3The merging threshold T is a controllable parameter, constrained by the
node’s minimum degree.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2025.3570450

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, MAY 2025 5

address this limitation, we propose a peer selection mechanism
that remains resilient under such changes.

Rather than relying on feature similarity, we leverage
the DFaaS P2P network’s peer sampling service to enable
decentralized and scalable neighbor discovery. It prioritizes
peers based on latency, selecting topologically-closer nodes
to balance similarity with reduced communication overhead.
This locality-aware selection provides a crucial advantage: it
inherently adapts to evolving network conditions, seamlessly
integrating new nodes without requiring explicit similarity
estimation. Furthermore, unlike traditional GL, which predom-
inantly relies on unicast propagation, we employ multicast to
improve communication efficiency. To prevent excessive mes-
sage flooding, we introduce a stochastic selection mechanism
that restricts interaction to a controllable fraction of active
peers. This ensures a diverse model exchange while keeping
message overhead manageable.

3) Age-Weighted Overwrite: In this paper, we propose
a novel model merging strategy, termed the Age-Weighted
Overwrite strategy, which synthesizes the Overwrite approach
(discussed in Section II-B) with the Age-Weighted Average
method, as introduced in [15].

The Age-Weighted Average [15] strategy modulates the
merging process by incorporating a weighting factor that
accounts for the age of each model. Formally, the age of
model i, denoted as ti, is defined as the cumulative number
of data records on which the model has been trained, where
each record is counted anew upon every training pass. This
formulation ensures that models trained on larger or more
frequently used datasets are assigned higher ages, reflecting
their accumulated learning history. The primary objective of
this approach is to mitigate the adverse effects of integrating
outdated models—i.e., models trained on substantially fewer
data points than the current one. The model age information
can be communicated through the context c, facilitating effi-
cient coordination among distributed agents.

The proposed Age-Weighted Overwrite strategy introduces
a probabilistic overwrite mechanism, wherein the received
model may entirely replace the current model with probability
p, which is dynamically computed based on the relative ages
(defined as in [15]) of the models. Specifically:

p =

1−
(

t
tr

)2

, if tr > t,(
tr
t

)2
, if tr ≤ t.

with t and tr representing the ages of the local and received
models, respectively.

4) Stopping Criteria: In its classical form, GL assumes that
the protocol is either continuously running or running for a
fixed amount of time. While the literature offers numerous
sophisticated techniques for terminating training to prevent
overfitting (e.g. early stopping, as discussed in [44]), these
methods are often challenging to adapt to the GL paradigm.
This is because each node operates with a distinct model,
making it difficult to define a general stopping criterion that
can effectively control the entire procedure.

In this work, we propose and examine the potential of
employing two stopping criteria for GL in our scenario:

1) FixedUpdates: each node is constrained to perform a
fixed number of updates. A new update is performed
each time a node receives a message from a neighbor.
In the event that a message is received subsequent to
the threshold being reached, it is discarded. This is the
simplest criterion, but when applied it does not take into
account the quality of the resulting model.

2) EarlyStopping: each node implements an early stopping
mechanism. Upon each update, the merged model is
trained for a fixed number of epochs. Subsequently, the
validation loss is evaluated and compared to that of the
best trained model so far. If the validation loss does not
show an improvement of at least a quantity equal to
the parameter designated as min_delta, a counter is
increased; otherwise, it is reset to zero. Upon reaching a
value designated as patience, the stopping criterion is
met. The primary distinction between this approach and
a classical early-stopping procedure [44] is the way how
the validation loss is evaluated. In traditional approaches,
the comparison is conducted between a global reference
model and a local one. In this approach, however, the val-
idation loss is evaluated after each update on a model—
result of a merge operation—that may originate from a
distinct neighbor with respect to previous merged models.

In both criteria, GL must address the issue of nodes
terminating their training at a different point in time. This
presents a challenge, as other nodes may continue selecting
a node that is no longer active in training activities, resulting
in the inefficient utilization of network resources and a slower
convergence speed. Nevertheless, this issue can be addressed
by establishing two fundamental rules:

1) Whenever a node receives a message including a model
after its stopping criterion has been satisfied, it discards
it and notifies the sender that it is no longer active;

2) A node must keep the MainLoop running for as long as
it has some active neighbors, regardless of whether it has
stopped or not, to ensure that its model—which is final
if it has met its stopping criterion—can be sent to them.
This ensures that those neighbors can continue updating
their models until they also meet the stopping criterion.

More details on node states and transitions in our simulations
will be provided in Section IV-A.

5) Model Compression via Subsampling: The exchange of
model updates among peers in decentralized learning systems
introduces significant network overhead, particularly as models
grow in size and complexity. This communication burden not
only affects scalability but also exacerbates vanishing variance.

To address these challenges, model compression has been
proposed as a means to reduce network overhead, mitigate
vanishing variance, and enhance generalization [45]–[47]. A
seminal work in this area explores strategies for improv-
ing communication efficiency in FL through compression
techniques such as quantization, sparsification, low-rank ap-
proximation, and subsampling [45]. However, in the specific
domain of GL, the use of model compression techniques
remains underexplored. A handful of studies have proposed
subsampling, where only a fixed percentage of randomly-

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2025.3570450

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, MAY 2025 6

selected model weights is shared with selected peers [15],
[43]. Building upon this body of work, our paper investigates
subsampling as a model compression technique due to its
proven computational efficiency.

IV. DISCRETE-EVENT SIMULATOR

We designed a discrete-event simulator capable of running
both the GL classical protocol and the proposed extensions.
The simulator is scenario-agnostic, meaning it is not restricted
to the specific context described in Section III-A.

Events are processed sequentially based on their times-
tamps, that is, when a new event occurs, it is added to a time-
ordered priority queue, whose elements are processed by the
simulator one at a time. The simulation ends when the queue
is empty. Optionally, a simulation can be configured so that
each node will periodically test its current model against a set
of benchmark models, which shall be the same for all nodes
(e.g. a model trained in a centralized fashion). By computing
the loss function for the predictions made at each step, it is
possible to analyze the training progress, both in terms of
loss reduction and convergence speed among the models in
different nodes.

The simulator allows configuring the capacity of each
link by specifying the time required to transfer model
weights—expressed in simulated seconds. It is possible to
define both indirect and direct links to create a wide variety of
network topologies, with configurable download and upload
bandwidths. Finally, the simulator supports both link and
node failures in a customizable way. We have integrated
both the carbontracker [48] and the scalene [49] profilers to
gather information on the power, energy, CPU and memory
consumption in several phases of the GL protocol.

In the following, we detail the most relevant aspects of the
simulator: the support of different node states and transitions
between them, and the simulation workflow including the
types of generated events.

A. Node states and transitions

Nodes can be in four different states, namely, ACTIVE,
TRAINING, STOPPED, and FAILED. A node is ACTIVE
if it continues accepting incoming messages from neighbors
and updating its own model. A node is TRAINING when
an update is triggered. This occurs when an ACTIVE node
receives a message from a neighbor and later begins training
its merged model. Upon completion of the training, depending
on whether the stopping criterion is met, the node can return
to the ACTIVE state or transition to the STOPPED one.
All messages received while the node is in the TRAINING
state are discarded. A node is STOPPED when it meets
the stopping criterion for training. Periodically, every node
undergoes a binomial trial with probability p to determine if
it should transition to the FAILED state. In this state, the node
ceases processing and discards all incoming messages. After
a configurable delay, it reverts to the ACTIVE state.

Fig. 2 shows an example network with 7 nodes. Green
nodes are ACTIVE (i.e., nodes 3 and 5), node 2 in blue is
TRAINING, three nodes are STOPPED (i.e., gray nodes 1, 4,

1 2

3

4

56

7

Fig. 2. Network with 7 nodes with different states. Green nodes (3 and
5) are ACTIVE, blue node (2) is TRAINING, gray nodes (1, 4, and 6) are
STOPPED, and the red node is FAILED. Node 6 is not sending its model
weights because its neighbors (nodes 1 and 4) are also stopped.

and 6), and 1 node is FAILED. Among STOPPED nodes, only
node 6 (dark gray) is not sending its model weights, because
both its neighbors are also stopped (i.e., nodes 1 and 4).

B. Workflow and event types

The simulator supports five main event types,
i.e., ReceiveModel, SendModel, SaveModel,
FailedNodeEvent, and RecoveryNodeEvent that
will be introduced in the following by describing the
simulation workflow.

According to the protocol specification, each node must
periodically send a copy of its model weights to the target
neighbors. To do so, it should first check if it has any
ACTIVE neighbor. If not, the event processing terminates
and the node stops sending model weights. Otherwise, the
node selects some targets to which it will send a copy of
its serialized (and possibly compressed) model weights. Both
target selection and model compression strategies depend on
the current simulator configuration. After that, the simulator
triggers the ReceiveModel events for the selected target
neighbors and the next SendModel event for the current
node, which occurs right after the transmission of all models
to neighbors is completed.

Please note that during the initialization phase of a sim-
ulation, an instance of the SendModel event is generated
for each of the nodes and enqueued in the first 60 seconds
of simulated time in a random fashion. This ensures that the
nodes start building their model asynchronously, eliminating
the bias of a sequential start.

As said, a node can receive messages from its neighbors
only if it is in ACTIVE state; otherwise, any received message
is discarded. Upon receiving a message, the model weights
are stored locally until T models are received from distinct
nodes. Once this threshold is reached, the N best performing
ones, in addition to the local one, are merged into a single
model using the chosen merge strategy, and this undergoes
training for a fixed number of epochs. After the training
process is completed, the SaveModel event is triggered.
Separating these two events allows the simulator to evaluate
the computational time required to conduct the training.

Upon completion of a round of model updates, a node
must evaluate the new model performance by computing the
validation loss. If this is lower than the one of the previous
model, indicating improved performance, the node should
store the updated model parameters. Additionally, the node
must assess its stopping criterion to determine its next state.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2025.3570450

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, MAY 2025 7

Finally, at regular intervals, the simulator probabilistically
determines whether a node should transition to the failing
state. If so, it generates both a FailedNodeEvent, marking
the node’s transition to a state where it halts processing and
discards incoming messages, and a RecoveryNodeEvent
with a future timestamp, scheduling the node’s return to the
ACTIVE state. An open-source prototype of the simulator is
publicly accessible [26].

V. EXPERIMENTAL SETUP

This section provides details on the datasets preparation
(Section V-A), the ML model used for all the experiments
(Section V-B), and finally, the training methodology and
evaluation metrics we considered (Section V-C).

A. Datasets Preparation

We considered two different types of workload traces as
datasets for our experiments: synthetic traces, which we con-
sidered to perform an initial training campaign and an ablation
study validating the different components of our GL protocol,
and real traces extracted from the workload of Microsoft’s
Azure Functions [50]. In both cases, since no information is
provided in the Azure dataset about which nodes serve the
incoming requests, the mapping between workload traces over
time and the nodes in the P2P network has been generated
based on real data related to the positions of telecommuni-
cation towers and the movement of people within the city of
Porto (Portugal). The underlying assumption behind exploiting
mobility traces in the data generation process is that people’s
movement within a city is a good proxy for network traffic
generated by users at the far edge.

In the following, we focus on the adopted procedures for
network and traffic generation. In particular, the first and
last steps are common to both the synthetic and real-traces
dataset, while the traffic generation process has been carried
out differently in the two cases.

1) Network Generation: The first step involves generat-
ing a network of interconnected nodes distributed over a
geographical area. Specifically, several networks have been
generated by considering the central area of Porto city (latitude
in [41.1369, 41.1690], longitude in [−8.6338,−8.5862]) and
sampling real antenna positions from the OpenCellID4

public dataset. An example is shown in Fig. 3.
After selecting the desired number n of nodes, we generated

networks with the desired degree of edge connectivity k5; note
that, considering telecommunication networks, it is safe to
assume a connectivity greater than 1 to ensure a minimum
level of redundancy and resilience against link failures.

Our algorithm weights the links according to Harvesine
distance between nodes, which is a measure of the distance
between two points on the surface of a sphere. This metric
is often used to compute geographical distances, especially
in navigation, as it provides more accurate measures than the
classical Euclidean distance.

4https://opencellid.org
5A graph is k-edge-connected if it remains connected whenever less than

k edges are removed; this occurs if each node has at least k neighbors.

Fig. 3. Example of a generated 3-edge connected network with 10 nodes.

2) Traffic Generation: This step has been detailed differ-
ently according to whether synthetic or real function traces
are considered. First of all, in both cases we have divided the
considered region of the Porto city into a 20× 20 grid, which
simplifies the dataset generation process and enables a rapid
creation of alternative datasets. Considering a specific network
generated as in the previous stage, each grid is assigned
to a different tower based on its distance from the tower
locations. To guarantee a realistic traffic profile towards the
towers, we have considered the Porto taxi6 dataset, which
encompasses GPS trajectories of taxis operating in the city of
Porto, sampled every 15 seconds, over the course of a year
spanning from 2013 to 2014.

To generate the synthetic workload traces, for each cell of
the grid we constructed a time series representing the number
of taxis present at any given moment, and we assumed that a
function request is generated whenever the GPS coordinates of
a taxi are sampled and directed towards the tower associated
to the grid the taxi is into. Considering the Azure function
traces, instead, we proceeded by associating each application
owner with one of the taxis in the Porto dataset. All requests
coming from a specific owner (i.e., taxi) are then directed
towards the tower associated with the grid where the taxi is at
a given moment in time. It is relevant noting that the Azure
traces include the number of per-minute function invocations
over 14 consecutive days; in our work, we have considered
aggregated invocations over 15-minute time intervals to limit
the noise in the workload signal.

3) Pre-processing: For each possible configuration (n, k),
where n represents the number of nodes and k is the network
edge connectivity, 10 network variants and their corresponding
node datasets are generated. For simplicity, the unique pair
given by a configuration and one of its instances will be
referred to as experimental setting. The datasets produced for
each experimental setting undergo a series of pre-processing
steps to prepare them for training. In particular, a total of
ν − τ time sequences is generated by each node to be used
for training, where ν is the number of generated observations
and τ = 4 is the number of past timesteps to be used for

6https://www.kaggle.com/datasets/crailtap/taxi-trajectory

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2025.3570450

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, MAY 2025 8

predictions. Obtained sequences are reshaped into a training
record (Xi, Yi), where Xi is the feature array for each time
step and Yi is a scalar value representing the true number
of requests to be predicted for each timestep. The 20% of
prepared sequences form the test set, while the 10% of those
in the training set are kept for validation.

The resulting datasets (one per node) contain a univariate
time series representing the number of requests, towards a
specific serverless function, that are generated by clients
connected to the base station at each specific time step. Not
considering the presence of multiple serverless functions is not
a limitation; indeed, as shown in [51], the best approach for
FaaS workload forecasting is training a single global univariate
model on samples from different time series (i.e., related to
different functions) and use it to predict the incoming traffic
for all functions, meaning that our approach can be readily
extended to consider multiple functions. Global univariate
models should be preferred over alternatives because: (i)
serverless functions often exhibit similar patterns, so a model
performing well on one time series is likely to do so also
on others; and (ii) the multiplicity of functions is too high to
train either a separate univariate model for each function or a
multivariate model with such a large number of outputs.

B. Machine Learning model

The ML model trained by each node is an LSTM (Long
Short-Term Memory) neural network, widely recognized as
the de facto standard for handling time series data due to
its robustness against the vanishing gradients problem [52].
Although transformers often yield better results, their superior
performance for time-series forecasting is still in question [53];
the large number of trainable parameters makes it impractical
to continuously serialize and transmit them over the network.

The architecture and hyperparameters tuning were con-
ducted manually. The final model comprises 2 stacked LSTM
layers with 50 units each (using the tanh activation function),
followed by a fully connected (FC) layer with 32 units (using
the ReLU activation function), and a single-unit output layer.
A dropout rate of 20% is applied before each FC layer as
a regularization technique. The Adam optimizer [54] was
chosen, with an initial learning rate of 0.001.

We used the Mean Squared Error (MSE) as a loss function,
as is commonly done for regression problems. MSE is partic-
ularly suitable for this application as it penalizes larger errors
more heavily, making it effective in cases where the magnitude
of the error is critical, not just its proportion to the true value.

C. Training methodology and evaluation metrics

For each tested experimental setting, including a specific set
of GL protocol parameters, we run 10 different simulations so
that the same configuration and network features get tested
on different network variants. Each simulation produces n
models M̃i (one per node), whose performance is compared
with those of two benchmark approaches: single-node models
Mi, trained exclusively on local data, and a centralized model
MC , trained on combined data obtained by aggregating and
shuffling the training records from all nodes. For a subset of

TABLE I
IMPACT OF DIFFERENT STRATEGIES THAT REDUCE NETWORK USAGE ON

GL GENERALIZATION CAPABILITIES AND TRAINING TIME

Technique Impact on
Generalization Training time

Reduce the number of updates Negative Positive
Introduce early stopping Negative Positive
Weights sampling Negative No impact
Slow down the MainLoop No impact Negative
Low target sampling probability No impact Negative

our experiments (i.e., Sections VI-A, VI-B1 and, VI-B3) we
also compared our approach with Federated Learning (FL)
using FedAvg [17] as aggregation strategy.

We considered the MSE our main evaluation metric to
compare model performance, which is also the loss function
used for training as mentioned in Section V-B. Furthermore,
we computed its mean (MMSE) and standard deviation (STD)
across all trained models and simulations, along with the
Relative Standard Deviation (RSD), defined as STD

MMSE . Since
it is scale-invariant, RSD provides a meaningful measure of
how similar the errors obtained by different models are.

These metrics were computed in the classical way by
comparing the predictions made by a node model with the
true values contained in its local test set. However, this was
not sufficient to evaluate the generalization capabilities of the
trained models, whose optimization is the main goal of a
decentralized learning approach (see Section I). Therefore, we
defined generalization metrics by computing MSE, MMSE,
STD and RSD, for each model, using as test set the union of
all the node neighbors test sets. In the latter case, it is thus
possible to evaluate the capability of the model to recognize
patterns experienced by other nodes.

VI. EMPIRICAL EVALUATION

This section presents and analyzes the results of all ex-
periments performed to validate the GL protocol in our
context. In particular, a preliminary comparison among the
centralized approach, the single-node (i.e., local-only) training,
and GL featuring different merge strategies is conducted in
Section VI-A. Section VI-B presents the results of an ablation
study aimed at exploring the impact of the different GL
protocol configuration parameters, and a scalability analysis is
discussed in Section VI-C. A summary of our observations on
how different techniques that reduce the network usage affect
the GL generalization capabilities and model training times
is reported in Table I. Section VI-D analyses the resilience
of GL with respect to the failure of different percentages
of nodes during training. A validation of our GL protocol
considering real function invocation traces coming from the
Microsoft Azure dataset [50] is reported and discussed in
Section VI-E. Finally, GL is assessed in terms of energy and
resource utilization in Section VI-F.

A. Comparison with benchmark approaches

Our initial experiments evaluate whether GL can serve as
a viable alternative to single-node, centralized, and Federated

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2025.3570450

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, MAY 2025 9

TABLE II
BASELINE NETWORK AND GL PROTOCOL CONFIGURATION

Parameter Value

Nodes n 10
Edge-Connectivity k 3

Updates 1 epoch × 100 updates
Target sampling probability π 50%

Weights sampling No

Fig. 4. Comparison among GL with different merge strategies, single-node
and centralized training, and Federated Learning (red triangles denote the
average MMSE across all experiments).

Learning approaches. To do so, we conducted experiments
using configuration parameters consistent with those reported
in the literature [15] (see Table II), comparing the impact of
different merge strategies. In these experiments, we did not
consider the protocol extensions proposed in Section III-C
apart from using the Age-Weighted Overwrite merge strategy.

We performed ten simulations across all the generated
variants of a 10 nodes 3-edge connected network. The MSE
and average MMSE values, considering both the classical and
generalized version (see Section V-C), are reported in Fig. 4.

We observe that the values of metrics computed in the
classical way are roughly equivalent for all approaches except
for FL. In contrast, the generalization performance of GL
models is better than those of single-node models, even though
worse than the ones of the centralized model, and FL, which,
however, shows a reduced variance. Notably, FL achieved
generalization performance on par with GL while exhibiting
reduced variance. This outcome is anticipated, as FL trains
a unified model for all nodes by averaging their parameters,
thereby slightly penalizing individual node performance in
favor of enhanced overall generalization. Furthermore, the
Age-Weighted Overwrite strategy, although marginally inferior
to the Age-Weighted Average strategy in terms of MMSE,
still slightly improves the base Overwrite strategy in terms
of classical metrics. Finally, we can observe from the exten-
sion of box-plot bars that, with the only exception of the
generalization performance of the centralized model, all the
other strategies achieve comparable values of STD and RSD.
Collectively, these results underscore the robustness of the GL
protocol with respect to the adopted merge strategy across both
classical and generalization metrics.

TABLE III
THE MEAN AND STANDARD DEVIATION OF MSE FOR DIFFERENT

NUMBERS OF UPDATES AND TRAINING EPOCHS

Training Classical Generalization
MMSE STD RSD MMSE STD RSD

GL 1 ep. × 100 updates 1309 1454 1.11 3256 3189 0.98
GL 1 ep. × 20 updates 2584 6049 2.34 6232 7778 1.25
GL 1 ep. × 50 updates 1404 1707 1.22 3884 3984 1.03
GL 2 ep. × 20 updates 1386 1621 1.17 5594 7034 1.26
GL 2 ep. × 50 updates 1303 1440 1.11 3822 3939 1.03
GL 5 ep. × 20 updates 1292 1425 1.10 5307 6798 1.28
GL 5 ep. × 50 updates 1270 1389 1.09 4814 5212 1.08

FL 1 ep. × 100 updates 2530 806 0.32 2535 802 0.32
FL 1 ep. × 20 updates 3189 1130 0.35 3192 1134 0.36
FL 1 ep. × 50 updates 2452 689 0.28 2453 692 0.28
FL 2 ep. × 20 updates 2575 830 0.32 2571 830 0.32
FL 2 ep. × 50 updates 2553 705 0.28 2567 724 0.28
FL 5 ep. × 20 updates 2718 932 0.34 2721 918 0.34
FL 5 ep. × 50 updates 2730 967 0.35 2728 958 0.35

Single (100 ep.) 1510 2768 1.83 7544 9852 1.31
Centralized (100 ep.) 1322 1403 1.06 1324 701 0.53

B. Impact and robustness of GL protocol parameters

We experimented with various configurations of the GL
protocol to evaluate how they balance model generalization
capabilities, network transmission costs (i.e., network usage),
and training time. In all subsequent sections, except for
Section VI-B3, we present results using the Age-Weighted
Average merge strategy. This strategy is slightly more effective
in terms of generalization metrics.

1) Number of epochs per update and number of updates:
We evaluated the impact on performance and convergence
speed of varying the number of updates per node and train-
ing epochs per update, while keeping all other parameters
unchanged. The results presented in Table III indicate that
increasing the number of epochs per update can yield per-
formance comparable to or even superior to that of a higher
number of updates with fewer epochs, based on classical met-
rics. Regarding generalization power, as expected, reducing the
number of updates negatively impacts performance. However,
the GL models still outperform those trained on a single
node, and different configurations of FL for classical metrics,
suggesting that a balance can be achieved between desired
accuracy and communication frequency among nodes.

This behavior happens because, when increasing the number
of epochs per update, models have more time to fit a node
dataset after they are transferred. This increases the model
divergence (see Fig. 5), but at the same time implies a
faster and more robust training progress with respect to the
predictions performed on the local node datasets, albeit at the
expense of generalization.

2) Weights compression through subsampling: This ap-
proach applies only to average-based merge strategies, intend-
ing to reduce the message size and, consequently, network
usage (which decreases proportionally to the sampling rate if
the number of updates per node remains constant).

We considered sampling rates of 0.2, 0.4, 0.6, 0.8, and 1
(i.e., no sampling), and set the other parameters as in Table II.
Experiments results (see Fig. 6) highlight how higher sampling
rates improve the performance in terms of classical metrics,
since they limit the impact that neighbors have on the model

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2025.3570450

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, MAY 2025 10

Fig. 5. MSE during training for one node during a sample experiment with
20 updates × 5 training epochs each. A spike occurs whenever a new model
arrives (the most it differs from the local model, the highest).

Fig. 6. Comparison between GL with different compression rates and
benchmark methods (red triangles: average MMSE across all experiments).

development in each node. As before, while generalization
capabilities are negatively affected by model sampling, the
MMSE of GL models remains significantly lower than the
one achieved by the single-node model, which promotes the
effectiveness of the paradigm.

3) Peer Sampling: One simple method to lower the num-
ber of sent messages, thereby reducing network costs, is to
decrease the target sampling probability π, i.e., the likeli-
hood that a node will choose to communicate with its target
neighbors. Table IV, experiments with π values ranging from
0.25 to 1.0 reveal that variations in π exert only a marginal
influence on the performance of GL, while FL displays higher
sensitivity, affecting both classical and generalization metrics.

4) Number of merged models: To evaluate the impact of
the PENS-inspired variant described in Section III-C1, we
run two experiments considering N = 3 merged models, one
with no compression and one with 20% weights sampling.
In both cases, we observed an improvement in terms of
generalization capabilities, while the classical metrics remain
roughly unchanged (see Table V).

However, it is relevant to note that using such a technique
increases the pressure on the network: since each node has
to wait until it receives a message from N > 1 (here, 3)
different neighbors before triggering an update, the overall

TABLE IV
MSE MEAN AND STANDARD DEVIATION WITH DIFFERENT TARGET

SAMPLING PROBABILITIES π

Experiment Classical Generalization
Strategy π MMSE STD RSD MMSE STD RSD

GL Age-Weighted Avg. 25% 1303 1447 1.11 3304 3285 0.99
GL Age-Weighted Avg. 50% 1309 1454 1.11 3256 3189 0.98
GL Age-Weighted Avg. 75% 1314 1462 1.11 3322 3264 0.98
GL Age-Weighted Avg. 100% 1311 1449 1.11 3276 3403 1.04

FL FedAvg 25% 2835 1095 0.39 2828 1102 0.39
FL FedAvg 50% 2530 806 0.32 2535 802 0.32
FL FedAvg 75% 2728 1783 0.65 2740 1809 0.66
FL FedAvg 100% 2460 618 0.25 2444 625 0.26

Single 1510 2768 1.83 7544 9852 1.31
Centralized 1322 1403 1.06 1324 701 0.53

TABLE V
MSE MEAN AND STANDARD DEVIATION WITH DIFFERENT NUMBERS OF

MERGED MODELS

N. Models Sampling Classical Generalization
MMSE STD RSD MMSE STD RSD

1 100% 1309 1454 1.11 3256 3189 0.98
3 100% 1312 1464 1.12 2893 2601 0.90
1 20% 1285 1417 1.10 5990 7345 1.23
3 20% 1295 1439 1.11 4704 5446 1.16

number of the exchanged messages will be at least N times
higher than in the standard case (N = 1). In any case, note
that an N× estimate may be too optimistic: in general, nodes
do not receive exactly one message per update from each of
its neighbors; instead, multiple messages are exchanged before
collecting the N required sets of model weights.

5) Stopping criteria: We run a set of experiments to in-
vestigate the impact of the two stopping criteria introduced in
Section III-C4: FixedUpdates and EarlyStopping (ES). With
respect to the latter we want to investigate whether, from a
node perspective, its own validation loss history may be a
valid indicator of the overall training progress. In particular, we
designed a conservative EarlyStopping strategy that requires 5
updates without an improvement of at least 0.1 in validation
loss, and an aggressive EarlyStopping one, which requires 5
epochs without an improvement of at least 1. We compare it
with a FixedUpdate strategy where training is performed with
100 fixed updates per node.

As shown in Table VI, even though the classical metrics
are roughly comparable, models trained with EarlyStopping
show remarkably worse generalization performance than those
trained for more epochs. Based on these results, it is reasonable
to assume that validation loss is not a sufficient metric to define
an intelligent stopping criterion as it does not take into account
the generalization performance of models.

At the same time, we can observe that the generalization
capabilities of GL models are still superior to those of a single-
node-only model. Since EarlyStopping, limiting the number
of updates per node helps reduce the network usage and the
training time, a good trade-off can be found between the
models’ accuracy and the overall costs of their development.

C. Scalability and network costs

Scalability is one of the most relevant properties for dis-
tributed approaches. We analyzed how the GL protocol scales

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2025.3570450

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, MAY 2025 11

TABLE VI
MSE MEAN AND STD DEVIATION WITH DIFFERENT STOPPING CRITERIA

Schedule Classical Generalization
MMSE STD RSD MMSE STD RSD

FixedUpdates 1309 1454 1.11 3256 3189 0.98
Conservative ES 1328 1451 1.09 6267 8389 1.34
Aggressive ES 1334 1461 1.09 6392 8082 1.26

6 8 10 12 14 16 18 20 22 50 100
Number of nodes n

28

30

32

34

36

38

40

42

44

Av
g.

 n
um

be
r o

f m
es

sa
ge

s p
er

 n
od

e 
m

Fig. 7. Average number of messages per node with respect to the number of
nodes in the network. Each blue data point represents the m value within a
single simulation; red crosses represent the average over all the simulations.

to bigger P2P networks by considering as metric the average
number of messages exchanged per node throughout the sim-
ulation, denoted by m. In particular, Sections VI-C1–VI-C4
evaluate whether and how this is influenced by the protocol
configuration parameters. Section VI-C5 discusses whether GL
can limit, with respect to the centralized approach, the network
load each node is subject to. All experiments except those in
Section VI-C4 were run considering 25 updates per node, and
assuming that 4 epochs are trained per update.

1) Impact of the number of nodes in the network: The first
set of experiments explored the relationship between m and
the number of nodes n, varied between 6 and 22, and two
larger networks with 50 and 100 nodes. All experiments were
conducted on 3-edge connected P2P networks. As expected,
m is roughly constant with respect to n (see Fig. 7). However,
it is relevant to note that the observed value of m is always
significantly higher than the theoretical minimum (which is 25,
as the number of updates per node). This discrepancy arises
because nodes typically exchange multiple messages before
the communication process is effectively concluded.

Another key factor affecting m is the number of incom-
ing messages a node discards, either because it is in the
TRAINING state or because it has already begun the transition
to the STOPPED state (see Section IV-A). In particular,
the number of messages discarded during the transition to
STOPPED is relatively small, and its impact diminishes, as
the number of per-node updates increases. In contrast, the
number of messages discarded during the TRAINING state is
influenced by the average number of neighbors of each node
(i.e., by the k-edge connectivity of the network), and by the
ratio between the training and the model transfer times, as
clarified in the next sections.

Fig. 8. Average number of messages per node for different network graphs.

2) Impact of the number of P2P network links: Since, as
mentioned, the number of discarded messages is influenced
by the average degree of a network node, it is interesting
to see how network costs are impacted by an increase in
the number of network links. For this reason, three sets
of experiments were performed. We initially considered 10-
nodes and 20-nodes networks, respectively, and tuned the k
parameter related to the k-edge connectivity by considering:
(i) all values between 1 and 9 for the 10-nodes network; (ii)
all odd values between 3 and 19 for the 20-nodes network.
Then, we kept k = 3 fixed and varied n between 5 and 20 as
in the previous section.

Note that, as mentioned in Section V-A1, k-edge connec-
tivity is guaranteed if each node has at least k neighbors.
However, the actual number of edges may be slightly different
depending on the generated topology. Therefore, to better
characterize the network graphs, we will report in the next
figures their edge/nodes ratio instead of the prescribed k value.

Figure 8 reveals a linear relationship between the ratio
of edges to nodes (i.e., the average number of links per
node) and m across all experimental settings. Moreover, the
uniformity of the linear regression coefficients, combined with
the analysis in the previous section, leads us to conclude that
m is independent of the number of nodes in the network and
depends solely on the node degree.

3) Impact of the transfer time and target sampling proba-
bility: We validated the observation that high values of m are
related to a large number of message rejections by increasing
by 10 times the model transfer time (i.e., High transfer
time), under the assumption that, if this is significantly longer
than the training time, the chance of receiving a message
while in the TRAINING state is lower. Furthermore, since we
observe fewer rejections when decreasing the target sampling
probability π, we also run a set of simulations with π = 0.25
instead of 1 (i.e., Low neighbor sampling probability). We
considered 20-nodes networks and varied k as done previously.

Results are shown in Figure 9: we observe that the values
of m decrease more significantly for more dense networks. In
this setting, reducing the sample probability π proves to be
very effective in decreasing the network load.

4) Impact of the number of model updates: It is reasonable
to assume that m grows proportionally to the number of per-
node updates within a simulation. To validate this, we run a

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2025.3570450

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, MAY 2025 12

Fig. 9. Average number of messages per node for different transfer times and
neighbor sampling probabilities.

Fig. 10. Average number of messages per node varying the number of updates.

set of experiments with a variable number of updates on a
20-node 3-edge connected network (see Fig. 10). The results
of Fig. 10 confirm our assumption.

5) Comparison with the centralized approach: We com-
pared the traffic generated by the GL protocol and the central-
ized approach considering a star network architecture, where
the master node (i.e., centralized server) is directly linked with
all the participants. In terms of network costs, this can be
considered the best-case scenario for centralized training, as
all the data transmissions between master and clients have only
to traverse the single link connecting them.

In a centralized scenario, the incoming network cost for
a master node connected to n clients is nD, where D is
the dataset dimension, whereas the outgoing network traffic
is nM , where M is the model size. Therefore, the overall
network cost can be defined as:

CC = Cin
C + Cout

C = nD + nM = n(αM +M) = n(1 + α)M,

where α is a scaling factor between model and dataset size
(in our experiments, α is ∼ 4.7).

On the other hand, the average network load for a node
participating in GL is given by:

CGL = C
in
GL + C

out
GL = rmM + rmM = 2rmM,

where r ∈ (0, 1] denotes the compression rate if weights
sampling is applied.

Fig. 11. Comparison between the network load with GL and the centralized
approach, expressed as a function of the model size M .

As discussed in Section VI-C1, m and, consequently, CGL,
remain invariant with respect to the number of nodes n.
This invariance implies that, irrespective of the GL protocol
parameters and associated network costs, there always exists
a sufficiently large n for which CGL < CC . An example
is reported in Fig. 11, where we report the network load
computed for: (i) a 3-edge connected network (with r = 1),
(ii) a 6-edge connected network (with r = 1), and (iii) a
centralized master node varying the value of α.

For both values of k and all α, we observe that CC

becomes higher than CGL as the number of nodes reaches
a given threshold. We can conclude that the GL protocol
offers advantages over the centralized model in terms of
network load, particularly when dealing with large graphs.
While the GL protocol may generate more traffic in smaller
networks, it distributes communications more evenly across
the network. This reduces the likelihood of bottlenecks, which
are more common when all data must be sent from clients to
a centralized server.

D. Node failure resiliency

We assessed the resiliency of our approach to node failures
by varying the failure probability. In each simulation, at fixed
intervals of i = 60, the simulator probabilistically determines
whether to trigger a node failure based on the configured
probability p ∈ {0.0025, 0.005, 0.01}. When a failure occurs,
the recovery time is sampled from a normal distribution with
mean µ = 125 and standard deviation σ = 5.

The parameters i, µ, and σ were chosen by considering
the network size (10 nodes), the overall simulated training
duration at each round (5 time units), and the model weights
transmission time (i.e., tw ∈ [25, 35]). For instance, with a
failure probability of p = 0.01, the simulation produces an
average of 4 node failures, with each failure causing a node
to miss approximately 3–4 training rounds before recovering.

In our experiments, runs with node failures occurred as
follows: for p = 0.0025, 6 out of 10 runs experienced
failures (10 failures in total, averaging 1.0 failure per run);
for p = 0.005, 9 out of 10 runs were affected (18 failures in
total, averaging 1.8 failures per run); and for p = 0.01, all
10 runs exhibited failures (53 failures in total, averaging 5.3
failures per run).

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2025.3570450

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, MAY 2025 13

TABLE VII
MEAN MSE, STD, AND RSD FOR THE CLASSICAL METRIC FOR ALL THE

NODES IN THE NETWORK, NON-FAILED NODES, AND FAILED NODES
UNDER DIFFERENT NODE FAILURE PROBABILITIES

Failure
prob.

All nodes Non-failed nodes Failed nodes

MMSE STD RSD MMSE STD RSD MMSE STD RSD

0.0025 1306 90 0.07 1277 206 0.16 1593 1876 1.18

0.005 1307 87 0.07 1265 314 0.25 1169 646 0.55

0.01 1312 90 0.07 1523 554 0.36 1196 268 0.22

TABLE VIII
MEAN MSE, STD, AND RSD FOR THE GENERALIZATION METRIC FOR
ALL THE NODES IN THE NETWORK, NON-FAILED NODES, AND FAILED

NODES UNDER DIFFERENT NODE FAILURE PROBABILITIES

Failure
prob.

All nodes Non-failed nodes Failed nodes

MMSE STD RSD MMSE STD RSD MMSE STD RSD

0.0025 2958 962 0.33 2813 812 0.29 5108 4835 0.95

0.005 3150 1074 0.34 3072 1049 0.34 3332 2127 0.64

0.01 3227 1170 0.36 3019 1538 0.51 3580 1446 0.40

Tables VII and VIII summarize the performance results
using the classical and generalization metrics, respectively.
For each metric, we report aggregated values of the MMSE,
STD, and RSD computed across all nodes, non-failed nodes,
and failed nodes.

The results are consistent with our initial comparisons with
benchmark approaches (see Fig. 4), as there is no signif-
icant performance difference between failed and non-failed
nodes—demonstrating the notable resilience of our approach.
An exception was observed for p = 0.0025, where the failed
nodes exhibited an unexpected increase in MMSE (and a
high STD) for the generalization metric. Further investigation
revealed that, in one run, the sole failed node produced a
substandard model (with a generalization MSE of 14299),
which skewed the aggregated metrics. Additionally, one of
its three neighboring nodes also concluded the simulation
with poor performance (a generalization MSE of 9829), while
the remaining neighbors performed comparably to the non-
failed nodes. We hypothesize that this deviation is attributable
to the interplay between network topology and random peer
selection; however, further experiments are required to validate
this hypothesis.

E. Validation with real function traces

Following the same approach described in Section V-C,
we trained GL models on the datasets built upon Microsoft
Azure functions traces [50] as outlined in Section V-A. We
considered ten randomly-generated 10-node, 3-edge-connected
networks and adopted the configuration parameters described
in Table II, and the Age-Weighted Average merge strategy.

The results achieved by GL, single-node, and centralized
models, both in terms of classical and generalized metrics, are
reported in Table IX. The values of classical and generalized
metrics confirm the pattern observed with synthetic traces,
with the GL protocol improving the generalization capabilities
of the models with respect to the single-node case.

TABLE IX
MSE MEAN AND STANDARD DEVIATION FOR GL, SINGLE-NODE AND

CENTRALIZED MODELS TRAINED AND TESTED ON THE AZURE
FUNCTIONS DATASET

Training Classical Generalization
MMSE STD RSD MMSE STD RSD

GL 27188 3348 0.12 37132 8693 0.23
Single 26843 2229 0.08 40572 9512 0.23

Centralized 24038 1991 0.08 25212 958 0.04

TABLE X
ENERGY CONSUMPTION IN DIFFERENT PHASES OF THE GL PROTOCOL

Event Model fit SendModel ReceiveModel

mean std 25% 75% mean std 25% 75% mean std 25% 75%

Power (W) 9.69 0.52 9.37 9.92 10.70 2.45 10.92 11.88 10.69 0.45 10.48 10.96
Energy (J) 1.93 3.68 0.67 0.75 0.16 0.07 0.14 0.19 20.74 1.55 19.88 21.69

Runtime (s) 0.19 0.34 0.07 0.08 0.01 0.01 0.01 0.02 1.93 0.12 1.86 1.97

Additionally, Figure 12 reports the real and predicted work-
load values for a sample experiment, obtained by one node
participating in the GL protocol. The predictions align with
both the training and test traces, as well as with the common
test trace used to evaluate the generalized metrics. Although
peak values are not correctly identified by the model in most
cases, the predictions capture well the moving average of
the distributions, which is represented in the figure by the
green line, and closely follow the workload pattern. The same
behavior can be observed in Figure 13, which reports the real
and predicted traces for the common test set obtained with the
single-node model and the centralized model.

F. Energy and resource profiling

We leveraged carbontracker [48] to monitor the power
(in Watt) and energy (in Joule) required by specific node
operations throughout the GL simulation. In particular, we
focused on the model training, collecting metrics for each
epoch, and on the SendModel and ReceiveModel events
(see Subsection IV-B), gathering the power and energy con-
sumption related to each event processing. We run simulations
considering 30 updates per node, and running 10 training
epochs per update. We chose to increase the number of epochs
per update with respect to the experiments reported in Subsec-
tion VI-E to ensure that the time spent by nodes in the training
and model update phases is large enough to guarantee stable
measurements. We trained the models considering the dataset
based on Azure functions traces, running on a MacBook Pro
M3 with 11 cores and 18Gb RAM.

The average, standard deviation and quantiles of the col-
lected metrics per each model fit, send model and receive
model call are reported in Table X. As in the previous
sections, they were obtained by considering 10 randomly-
generated networks. Throughout the overall simulation, which
corresponds to 300 training epochs and around 30 communi-
cation rounds, each node consumes (on average) 2906.29W
for model training, 310.30W to send the model to peers, and
320.75W in the receive model routine. These can be used
to estimate the overall CO2 emissions by considering the
average carbon intensity where simulations were conducted

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2025.3570450

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, MAY 2025 14

Fig. 12. Real and predicted workload values for a sample node participating in the GL protocol, considering the training, validation and test trace, and the
common test trace used to evaluate the generalized metrics. The green line represents a moving average of the real values over 4-step windows.

Fig. 13. Real and predicted workload values for the single-node (above) and the centralized model (below), considering the common test trace used to evaluate
the generalized metrics. The green line represents a moving average of the real values over 4-step windows.

(in our case, Monza, Lombardy, IT, had an average intensity
of 330.72gCO2/kWh).

Throughout the simulations, we have also gathered infor-
mation on the CPU and RAM consumption, leveraging the
scalene [49] profiler. In particular, we have observed that
nodes spend most of their time in conducting the model
training phase (almost 90% of the overall runtime). This
is characterized by an average CPU utilization of 79.48%
(with a standard deviation of 13.70) and consumes on average
27.82Mb of RAM (with a standard deviation of 0.85); the
peak RAM consumption is of 41.45Mb on average (standard
deviation: 3.78), which guarantees that the training process is
tractable even for small-scale edge devices.

VII. RELATED WORK

This section recalls the main related work in the context of
time series forecasting and edge workload forecasting, with
main focus on decentralized learning.

A. Time-series analysis and prediction

The field of edge workload forecasting is based on the
principles of time-series analysis and prediction, a subject
that has been extensively researched and documented in the
academic literature for a considerable period of time [55]. In
general, classical approaches (e.g., ARIMA [56]) for time-
series prediction aim to forecast a single time series by
studying linear relationships between observations collected in
the past and future observations. Typically, this linear approach

yields suboptimal predictions [55]. In recent times, there has
been a notable increase in the use of neural network models,
largely due to their capacity to discern non-linear relationships.
For example, Recurrent Neural Network (RNN) models, such
as LSTM [57] and Gated Recurrent Unit (GRU) [58], are
widely used. However, these ML models often require greater
time and hardware resources for training purposes [55]. In this
paper we adopted LSTM given the good performance obtained
in some preliminary experiments.

B. ML-based workload forecasting at the Edge

Recently, research efforts have been made on the use
of ML techniques specifically for workload forecasting in
edge environments. For instance, Miao et al. [59] present
an approach based on Graph Neural Networks to capture the
interconnected topology of edge servers, assuming that servers
in close proximity often exhibit similar workload patterns.
Ma et al. [55] propose an edge-cloud collaboration as a
means of capturing inter-site correlations while simultaneously
advancing a distributed approach wherein the majority of the
computation is conducted at the Edge. Some recent work has
also adopted the Federated Learning paradigm as a means to
collaboratively train a model for workload forecasting at the
Edge without sharing local data. For instance, Que et al. [60]
focus on this aspect in the context of Metro Optical Networks.
However, these studies still either perform model training in
a single location or need a central coordination, as in the case
of Federated Learning. Our approach completely eliminates

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2025.3570450

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, MAY 2025 15

the need for a central location and fully decentralizes model
training at the Edge.

C. Decentralized training solutions

When dealing with the need for decentralized training, some
studies investigate the possibility of adapting FL to a decen-
tralized setting [16], [61], [62]. Wink et al. [62] propose a P2P
variant of FL that can enhance data confidentiality and privacy
protection, particularly in systems that cater to smaller groups
of collaborating data owners. In the proposed approach, peers
do not exchange model weights; rather, they collaboratively
perform Secure Average Computation to obtain the merged
models. Kalra et al. [61] propose ProxyFL, a proxy-based FL
method for decentralized collaboration that facilitates the train-
ing of robust and high-performance models while maintaining
data privacy and communication efficiency. Zhou et al. [16]
present PPAFL, a P2P-based privacy-perceiving asynchronous
FL framework for the decentralized training of secure and
resilient mobile robotic systems. These works built on top
of a seminal paper by Hegedus et al. [15], which proposes
Gossip Learning as a promising decentralized alternative to
FL [43]. Starting from this body of research, our work aims
at adopting decentralized learning [14], with particular focus
on GL, in the context of workload forecasting at the Edge,
while incorporating tailored adaptations to this use case.

D. Gossip Learning adaptations

Our proposed extensions and adaptations to GL are related
to four main aspects: (i) how the received models are merged,
(ii) how the peers are selected for sending model updates, (iii)
how the model can be compressed to reduce communication
overhead and (iv) when the protocol should stop its execution.

In literature, some different merging strategies have been
proposed, being either parameter-based [38] [15], or gradient-
based [39]. In our paper we adopt the merging strategies
designed in [15], and we propose a novel strategy, i.e., Age-
Weighted Overwrite, that incentivize more stable models. In
addition, inspired by [23], we enable the simultaneous merging
of multiple models. Different peer selection strategies have
also been proposed, based e.g. on topology-aware selection
and node prioritization [35]–[37]. In this paper we instead
adopt an active-peer random selection strategy, which better
suits to dynamic network conditions as those occurring in the
considered scenario. Model compression has been investigated
in some papers [15], [43], [47]: building upon them, we
propose subsampling as a mean to achieve model compression.
Finally, no previous work on GL focuses on the problem
of protocol execution’s stopping to prevent overfitting. In
this paper we propose two strategies, i.e., FixedUpdates and
EarlyStopping, with the latter adapted from [44].

E. Time series forecasting with Gossip Learning

The application of GL to the forecasting of time-series data
has been investigated by few works in literature. Dinati et al.
[63] focus on vehicle trajectory prediction. Their scenario is
similar to the one considered in this work, as it accounts for

dynamic network topologies. However, our study introduces
the extensions reported in Section VII-D and extends the
evaluation to aspects related to scalability and network costs.
Palmieri et al. [64] investigate the impact of different network
topologies on the capacity of nodes to incorporate knowledge
derived from data patterns observed in other nodes into their
local models. Their work provides a valuable complement to
our experiments on the impact of network size, focusing on
the impact of network topology variation on GL.

VIII. CONCLUSION

This paper addressed the workload forecasting problem in
a fully-decentralized edge environment, leveraging the Gossip
Learning paradigm to mitigate challenges arising from geo-
graphical distribution, workload pattern heterogeneity, and the
dynamic nature of nodes, which join and leave the network
due to unstable links and failures. Building on existing peer-to-
peer learning protocols, we enhanced the foundational Gossip
Learning algorithm by introducing a performance-driven selec-
tion mechanism that prioritizes models received from neigh-
boring nodes based on their quality. Additionally, we proposed
a novel merging strategy and integrated two distinct stopping
criteria into the protocol to mitigate overfitting. Extensive
experimental validation, conducted using the discrete-event
simulator developed in this work, demonstrated the effective-
ness of Gossip Learning and its extensions in a representative
P2P edge environment. Our results show that Gossip Learning
not only achieves competitive performance against benchmark
methods (i.e., centralized, single-node learning, and Federated
Learning) but also exhibits robustness and scalability across
diverse protocol and network conditions.

REFERENCES

[1] X. Kong, Y. Wu, H. Wang, and F. Xia, “Edge computing for internet of
everything: A survey,” IEEE Internet of Things Journal, vol. 9, no. 23,
pp. 23 472–23 485, 2022.

[2] C. N. L. Tan, C. Klein, and E. Elmroth, “Multivariate LSTM-
Based Location-Aware Workload Prediction for Edge Data Centers,” in
IEEE/ACM CCGRID, 2019.

[3] C. Cicconetti, M. Conti, and A. Passarella, “A decentralized framework
for serverless edge computing in the internet of things,” IEEE Trans.
Netw. Serv. Manag., vol. 18, no. 2, pp. 2166–2180, 2021.

[4] I. Wang, E. Liri, and K. K. Ramakrishnan, “Supporting iot applications
with serverless edge clouds,” in IEEE CloudNet, 2020.

[5] M. S. Aslanpour, A. N. Toosi, C. Cicconetti, B. Javadi, P. Sbarski,
D. Taibi, M. D. de Assunção, S. S. Gill, R. Gaire, and S. Dustdar,
“Serverless edge computing: Vision and challenges,” in ACSW, 2021.

[6] E. Paraskevoulakou and D. Kyriazis, “Leveraging the serverless
paradigm for realizing machine learning pipelines across the edge-cloud
continuum,” in ICIN, 2021.

[7] J. Jiang, S. Gan, Y. Liu, F. Wang, G. Alonso, A. Klimovic, A. Singla,
W. Wu, and C. Zhang, “Towards demystifying serverless machine
learning training,” in SIGMOD, 2021.

[8] P. G. Sarroca and M. S. Artigas, “Mlless: Achieving cost efficiency in
serverless machine learning training,” J. Parallel Distributed Comput.,
vol. 183, p. 104764, 2024.

[9] P. Aditya, I. E. Akkus, A. Beck, R. Chen, V. Hilt, I. Rimac, K. Satzke,
and M. Stein, “Will serverless computing revolutionize nfv?” Proc.
IEEE, vol. 107, no. 4, pp. 667–678, 2019.

[10] M. Savi, A. Banfi, A. Tundo, and M. Ciavotta, “Serverless computing
for NFV: is it worth it? A performance comparison analysis,” in IEEE
PerCom Workshops, 2022.

[11] A. Sabbioni, A. Garbugli, L. Foschini, A. Corradi, and P. Bellavista,
“Serverless computing for qos-effective NFV in the cloud edge,” IEEE
Commun. Mag., vol. 62, no. 4, pp. 40–46, 2024.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2025.3570450

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, MAY 2025 16

[12] V. Karagiannis, A. Venito, R. Coelho, M. Borkowski, and G. Fohler,
“Edge computing with peer to peer interactions: use cases and impact,”
in IoT-Fog, 2019.

[13] M. Masdari and A. Khoshnevis, “A survey and classification of the
workload forecasting methods in cloud computing,” Clust. Comput.,
vol. 23, no. 4, pp. 2399–2424, 2020.

[14] L. Yuan, Z. Wang, L. Sun, P. S. Yu, and C. G. Brinton, “Decentralized
federated learning: A survey and perspective,” IEEE Internet of Things
Journal, vol. 11, no. 21, pp. 34 617–34 638, 2024.

[15] I. Hegedűs, G. Danner, and M. Jelasity, “Gossip learning as a decen-
tralized alternative to federated learning,” in DAIS, 2019.

[16] X. Zhou, W. Liang, K. I. Wang, Z. Yan, L. T. Yang, W. Wei, J. Ma, and
Q. Jin, “Decentralized P2P federated learning for privacy-preserving and
resilient mobile robotic systems,” IEEE Wirel. Commun., vol. 30, no. 2,
pp. 82–89, 2023.

[17] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in AISTATS, A. Singh and X. J. Zhu, Eds., vol. 54, 2017, pp.
1273–1282.

[18] M. Ciavotta, D. Motterlini, M. Savi, and A. Tundo, “Dfaas: Decen-
tralized function-as-a-service for federated edge computing,” in IEEE
CloudNet, 2021.

[19] C. Cicconetti, M. Conti, A. Passarella, and D. Sabella, “Toward
distributed computing environments with serverless solutions in edge
systems,” IEEE Commun. Mag., vol. 58, no. 3, pp. 40–46, 2020.

[20] C. Cicconetti, M. Conti, and A. Passarella, “Architecture and perfor-
mance evaluation of distributed computation offloading in edge com-
puting,” Simul. Model. Pract. Theory, vol. 101, p. 102007, 2020.

[21] T. Pfandzelter and D. Bermbach, “tinyfaas: A lightweight faas platform
for edge environments,” in ICFC, 2020.

[22] I. Baldini, P. Castro, K. Chang, P. Cheng, S. Fink, V. Ishakian,
N. Mitchell, V. Muthusamy, R. Rabbah, A. Slominski, and P. Suter,
Serverless Computing: Current Trends and Open Problems. Springer,
2017.

[23] N. Onoszko, G. Karlsson, O. Mogren, and E. L. Zec, “Decentralized
federated learning of deep neural networks on non-iid data,” arXiv
preprint arXiv:2107.08517, 2021.

[24] R. Ormándi, I. Hegedűs, and M. Jelasity, “Asynchronous peer-to-peer
data mining with stochastic gradient descent,” in Euro-Par, 2011.

[25] M. Polato, “gossipy documentation,” 2024, accessed 27.07.2024.
[Online]. Available: https://makgyver.github.io/gossipy/index.html

[26] A. Tundo, F. Filippini, F. Regonesi, M. Ciavotta, and M. Savi,
“Github repository,” 2024, accessed 13.05.2025. [Online]. Available:
https://github.com/unimib-datAI/gl-forecasting-edge

[27] ——, “Zenodo repository,” 2024, accessed 13.05.2025. [Online].
Available: https://doi.org/10.5281/zenodo.15393791

[28] M. Savi and F. Olivadese, “Short-Term Energy Consumption Forecasting
at the Edge: A Federated Learning Approach,” IEEE Access, vol. 9, pp.
95 949–95 969, 2021.

[29] V. Perifanis, N. Pavlidis, R.-A. Koutsiamanis, and P. S. Efraimidis,
“Federated learning for 5G base station traffic forecasting,” Computer
Networks, vol. 235, 2023.

[30] H. G. Abreha, M. Hayajneh, and M. A. Serhani, “Federated learning in
edge computing: A systematic survey,” Sensors, vol. 22, no. 2, 2022.

[31] R. Ormándi, I. Hegedűs, and M. Jelasity, “Gossip learning with lin-
ear models on fully distributed data,” Concurrency and Computation:
Practice and Experience, vol. 25, no. 4, pp. 556–571, 2013.

[32] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermarrec, and M. van
Steen, “Gossip-based peer sampling,” ACM Trans. Comput. Syst.,
vol. 25, no. 3, p. 8–es, 2007.

[33] M. Assran, J. Romoff, N. Ballas, J. Pineau, and M. Rabbat, “Gossip-
based actor-learner architectures for deep reinforcement learning,” Ad-
vances in Neural Information Processing Systems, vol. 32, 2019.

[34] D. Kempe, J. Kleinberg, and A. Demers, “Spatial gossip and resource
location protocols,” Journal of the ACM, vol. 51, no. 6, pp. 943–967,
2004.

[35] J. Zhang, L. Zhao, and N. Lin, “Similarity-based gossip learning for
generative adversarial networks,” in ICCSN, 2023.

[36] L. Giaretta and Š. Girdzijauskas, “Gossip learning: Off the beaten path,”
in IEEE Big Data, 2019.

[37] J. Daily, A. Vishnu, C. Siegel, T. Warfel, and V. Amatya, “Gossipgrad:
Scalable deep learning using gossip communication based asynchronous
gradient descent,” arXiv preprint arXiv:1803.05880, 2018.

[38] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated optimization in heterogeneous networks,” in MLSys, 2020.

[39] X. Lian, W. Zhang, C. Zhang, and J. Liu, “Asynchronous decentralized
parallel stochastic gradient descent,” in ICML, 2018.

[40] Y. Wang, T. Yu, and K. Sakaguchi, “Context-based MEC platform for
augmented-reality services in 5g networks,” in IEEE VTC, 2021.

[41] I. Lujic, V. D. Maio, K. Pollhammer, I. Bodrozic, J. Lasic, and I. Brandic,
“Increasing traffic safety with real-time edge analytics and 5g,” in
EdgeSys, 2021.

[42] Y. Gou, S. Weng, M. A. Imran, and L. Zhang, “Voting consensus-based
decentralized federated learning,” IEEE Internet of Things Journal,
vol. 11, no. 9, pp. 16 267–16 278, 2024.

[43] I. Hegedüs, G. Danner, and M. Jelasity, “Decentralized learning works:
An empirical comparison of gossip learning and federated learning,” J.
Parallel Distributed Comput., vol. 148, pp. 109–124, 2021.

[44] T. Zhang, T. Zhu, K. Gao, W. Zhou, and P. S. Yu, “Balancing learning
model privacy, fairness, and accuracy with early stopping criteria,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 34, no. 9,
pp. 5557–5569, 2023.

[45] H. B. McMahan, F. Yu, P. Richtarik, A. Suresh, D. Bacon et al., “Fed-
erated learning: Strategies for improving communication efficiency,” in
NeurIPS, 2016.

[46] A. Reisizadeh, A. Mokhtari, H. Hassani, A. Jadbabaie, and R. Pedarsani,
“Fedpaq: A communication-efficient federated learning method with
periodic averaging and quantization,” in AISTATS, 2020.

[47] H. Wang, S. Guo, Z. Qu, R. Li, and Z. Liu, “Error-compensated
sparsification for communication-efficient decentralized training in edge
environment,” IEEE Transactions on Parallel and Distributed Systems,
vol. 33, no. 1, pp. 14–25, 2022.

[48] L. F. W. Anthony, B. Kanding, and R. Selvan, “Carbontracker: Tracking
and predicting the carbon footprint of training deep learning models,” in
ICML Workshop on Challenges in Deploying and monitoring Machine
Learning Systems, 2020.

[49] E. D. Berger, S. Stern, and J. A. Pizzorno, “Triangulating python
performance issues with Scalene,” in 17th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 23). Boston,
MA: USENIX Association, Jul. 2023, pp. 51–64. [Online]. Available:
https://www.usenix.org/conference/osdi23/presentation/berger

[50] M. Shahrad, R. Fonseca, I. n. Goiri, G. Chaudhry, P. Batum, J. Cooke,
E. Laureano, C. Tresness, M. Russinovich, and R. Bianchini, “Serverless
in the wild: characterizing and optimizing the serverless workload at a
large cloud provider,” in USENIX ATC, 2020.

[51] A. Joosen, A. Hassan, M. Asenov, R. Singh, L. Darlow, J. Wang, and
A. Barker, “How does it function? characterizing long-term trends in
production serverless workloads,” in SoCC, 2023.

[52] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, p. 1735–1780, 1997.

[53] A. Zeng, M. Chen, L. Zhang, and Q. Xu, “Are transformers effective
for time series forecasting?” in AAAI, 2023.

[54] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[55] X. Ma, M. Xu, Q. Li, Y. Li, A. Zhou, and S. Wang, “Edge workload pre-
diction based on deep learning,” in 5G Edge Computing: Technologies,
Applications and Future Visions, 2024, pp. 45–61.

[56] G. E. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time series
analysis: forecasting and control. John Wiley & Sons, 2015.

[57] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, p. 1735–1780, 11 1997.

[58] R. Zhao, D. Wang, R. Yan, K. Mao, F. Shen, and J. Wang, “Machine
health monitoring using local feature-based gated recurrent unit net-
works,” IEEE Trans. Ind. Electron., vol. 65, no. 2, pp. 1539–1548, 2018.

[59] W. Miao, Z. Zeng, M. Zhang, S. Quan, Z. Zhang, S. Li, L. Zhang, and
Q. Sun, “Workload prediction in edge computing based on graph neural
network,” in IEEE ISPA/BDCloud/SocialCom/SustainCom, 2021.

[60] C. Que and F. N. Khan, “A scalable federated learning-based approach
for accurate traffic prediction in edge computing-enable metro optical
network,” Computers & Industrial Engineering, p. 111004, 2025.

[61] S. Kalra, J. Wen, J. C. Cresswell, M. Volkovs, and H. R. Tizhoosh,
“Decentralized federated learning through proxy model sharing,” Nature
communications, vol. 14, no. 1, p. 2899, 2023.

[62] T. Wink and Z. Nochta, “An approach for peer-to-peer federated learn-
ing,” in IEEE/IFIP DSN Workshops, 2021.

[63] M. A. Dinani, A. Holzer, H. Nguyen, M. A. Marsan, and G. Rizzo,
“Gossip learning of personalized models for vehicle trajectory predic-
tion,” in IEEE WCNC Workshops, 2021.

[64] L. Palmieri, L. Valerio, C. Boldrini, and A. Passarella, “The effect
of network topologies on fully decentralized learning: a preliminary
investigation,” in NetAISys, 2023.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2025.3570450

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


