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Abstract—In recent years, Mobile Cloud Computing (MCC)
has been proposed to increase battery lifetime of mobile devices.
However, offloading on Cloud infrastructures may be infeasi-
ble for latency critical applications, due to the geographical
distribution of Cloud data centers that increases offloading
time. In this paper, we investigate the use of Mobile Edge
Cloud Offloading (MECO), namely offloading to a heterogeneous
computing infrastructure featuring both Cloud and Edge nodes,
where Edge nodes are geographically closer to the mobile device.
We evaluate improvements of MECO in comparison with MCC
for objectives such as applications’ runtime, mobile device battery
lifetime and cost for the user. Afterwards, we propose the Edge
Cloud Heuristic Offloading (ECHO) approach to find a trade-
off solution between the aforementioned objectives, according to
user’s preferences. We evaluate our approach by simulating of-
floading of Directed Acyclic Graphs (DAGs) representing mobile
applications through the use of Monte-Carlo simulations. The
results show that (1) MECO can reduce application runtime by
up to 70.7% and cost by up to 70.6% in comparison to MCC
and (2) ECHO allows user to select a trade-off solution with
at most 18% MAPE for runtime, 16% for cost and 0.5% for
battery lifetime, according to user’s preferences.

Index Terms—Edge Computing; Mobile offloading; DAG
scheduling; Heuristics; Monte-Carlo simulations.

I. INTRODUCTION

Mobile devices are becoming more popular in the last
years, thanks to their increasing hardware capabilities and
faster processors. Consequently, mobile applications become
more complex and provide an increasing amount of services.
However, this complexity requires an increasing amount of
processing power and energy. Since such devices have limited
battery capacity, it is important to reduce energy consumption
of mobile applications to increase devices’ battery lifetime and
consequently improve user experience.

In recent years, computation offloading has been proposed
as a solution to this problem [1], [2]. Computation offloading
pursues energy saving on mobile devices by offloading com-
putation to a remote computing infrastructure. Results of the
computation are then downloaded from this infrastructure to
the mobile device. We refer to this technique as Mobile Cloud
Computing (MCC) when offloading on a Cloud infrastructure.

Many works like [3], [4], [5], [6] discussed MCC. How-
ever, most of these works do not focus on latency critical
applications. Since latency is strongly affected by geographical
distance, a significant slowdown could be experienced when
offloading these applications to the Cloud, due to the geo-
graphical distribution of Cloud data centers. This can prevent
users offloading to Cloud and therefore affect provider’s profit.

We discuss Mobile Edge Cloud Offloading (MECO) as a
solution to this problem. In this approach, offloading latency is
reduced by exploiting Edge nodes, geographically closer to the
user. We propose a model for MECO, considering parameters
such as application running time, battery lifetime and user cost.
Based on this model, we define a simulation framework for
MECO and use it to simulate offloading of Directed Acyclic
Graphs (DAGs) representing mobile applications, showing
improvements for the aforementioned objectives in comparison
to MCC. Finally, we propose Edge Cloud Heuristic Offload
(ECHO), an heuristic offloading approach to select a trade-off
solution for these objectives, according to user’s preferences.

Our evaluation uses different DAG models of mobile ap-
plications, used in works like [7], [8] to model computations.
We perform our evaluation using Monte-Carlo simulations, as
this method allows to accurately model the variability of the
underlying Cloud/Edge infrastructure and the mobile devices.

Our results show that MECO can reduce running time of
mobile applications in comparison to MCC by up to 70.7%
and reduce cost by up to 70.6% with a 3% increase of battery
lifetime. Also we show that ECHO can find a trade-off solution
for different types of applications, with at most 18% MAPE
(Mean Absolute Percentage Error) for runtime, 16% for cost
and 0.5% for battery lifetime, according to user’s preferences.

The paper is organized as follows: we provide a background
for MECO in Section II. Then, we define our theoretical model
in Section III and ECHO approach in Section IV. Simulation
framework and experimental setup are defined in Section V.
Results are discussed in Section VI. Finally, we discuss related
work in Section VII and conclude the paper in Section VIII.

II. BACKGROUND

A. Mobile applications

Mobile applications can be executed either on a mobile
device or offloaded to a computational infrastructure. Ap-
plications are composed of different interdependent tasks,
each one with different requirements. Dependencies and task
requirements can affect task offloading: for example, task
could not be offloaded because it needs specific devices, not
available on the remote infrastructure (e.g. camera or GPS),
or because task execution depends on another task’s results.
Both these issues are discussed in Section III-A.



B. Mobile offloading

With mobile offloading, a mobile application (or part of it)
is offloaded from a mobile device to a remote computational
infrastructure. In Figure 1, we summarize the offloading pro-
cess. We assume that offloading is performed by a software
component running on the mobile device called offloading
engine. Offloading engine decides which tasks to offload and
which tasks to execute on the mobile device, based on the
application’s and infrastructure’s data collected during execu-
tion. Once offloading terminates, the infrastructure executes
tasks and sends the results to the mobile device. This process
repeats until the application terminates.
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Fig. 1: Offloading model.

C. Offloading engine

We identify the main components of offloading engine in
Figure 1: (1) Application profiler profiles the application,
extracting DAG structure and identifying tasks’ requirements
and dependencies; (2) System monitoring is monitoring data
about remote infrastructure, and (3) Decision engine, collects
data from the other two and performs offloading decisions. In
this work, we focus on the decision engine. We assume that de-
cision engine has already collected the application DAG model
annotated with requirements and offloading possibility for each
task from the Application profiler, as well as the information
about remote infrastructure from System monitoring. Appli-
cation and infrastructure model are described respectively in
Sections III-A and III-B. Concerning user preferences, we
identify the following objectives: (1) Application runtime, the
running time of the mobile application; (2) Battery lifetime, the
lifetime of mobile device battery, and (3) Cost, the additional
cost charged to user for offloading application to the remote
infrastructure. Objectives are described in Section III-D.

III. MODEL

A. Application model

Application modeling requires representing task require-
ments and interdependencies between the tasks. In [3], [9],

mobile applications are defined as a graph where nodes
are the tasks and edges represent the dependencies between
them. Therefore, we define a mobile application as a DAG
A = {Ta,La}, where Ta defines the set of all the application’s
tasks and La ⊆ Ta × Ta defines the dependencies between
tasks. Tasks are defined as in Definition 1:

Definition 1. A task ti ∈ Ta is defined as ti =
(MI, RAM, DATAin, DATAout, OFF) where MI are the millions of
instructions of the task, RAM the amount of memory required
by the task, DATAin and DATAout respectively the size of task
ti input data and the size of ti output and OFF ∈ {0, 1} where
OFF = 1 if ti can be offloaded, 0 otherwise.

By MI(ti), RAM(ti), DATAin(ti), DATAout(ti), OFF(ti) we
denote, respectively, millions of instructions, required RAM,
size of input and output data and offloading possibility of task
ti. We also define STORAGE(ti) = DATAin(ti) + DATAout(ti)
as the amount of storage required by the task ti. Links define
precedence relationships between tasks, namely,

Definition 2. A edge li,j ∈ La is a couple lij = (ti, tj), where
(1) ti, tj ∈ Ta. and (2) ∃ lij =⇒ ti is executed before tj .

For each lij we define latency(lij) as the maximum
acceptable latency between tasks. Also, we define bandwidth
requirements for lij as bw(lij). Finally, we define δin(ti, τ)
and δout(ti, τ) respectively as the set of ti incoming/outgoing
edges at time instant τ .

B. Infrastructure model

The type of infrastructure that we define in this work is a
Mobile Edge Computing (MEC) infrastructure.

Definition 3. We define a MEC infrastructure as I =
{NI ,LI}, where NI is the set of computational nodes and
LI the network connections between the nodes.

NI , is defined as NI = {CI , EI ,md}, respectively
the set of Cloud nodes, the set of Edge nodes and
the mobile device md. We define the mobile device md

as md = (CORES, MIPS, RAM, STORAGE, BATTERY, coords),
where CORES(md) is the number of cores of the device,
MIPS(md) represents the millions of instruction per second
that each core of md can execute, RAM(md) is the amount
of RAM of the device, STORAGE(md) is the amount of
storage of the device, BATTERY(md) the amount of energy of
mobile device battery and coords(md) the GPS coordinates
of the mobile device. We define a Cloud node ci ∈ CI as
ci = (CORES, MIPS, RAM, STORAGE), where CORES(ci) is the
number of cores available on the node, MIPS(ci) is the million
of instruction per second that ci can execute, RAM(ci) is the
amount of RAM of ci, STORAGE(ci) is the amount of storage
available on ci. Edge computing moves computation to Edge
nodes, geographically closer to the user, reducing latency of
moving data to geographically distributed Cloud data centers
across the Internet. Therefore, the main characteristics of Edge
nodes are (1) a limited amount of resource compared to the
cloud nodes, and (2) geographical proximity to the user, in this



case, the mobile device [10]. Therefore, we define an Edge
node ei ∈ EI as ei = (CORES, MIPS, RAM, STORAGE, coords),
where CORES(ei) is the number of cores available on the node,
MIPS(ei) represents the millions of instruction per second
that each core in ei can execute, RAM(ei) is the amount of
RAM available in ei, STORAGE(ei) is the amount of storage
available on the node and coords(ei) the GPS coordinates of
the Edge node. This last parameter will be used to decide
whether the Edge node is reachable by the mobile device.
Regarding LI , LI = NI × NI . For each link lij ∈ LI
we define the latency between ni and nj latency(ni, nj),
where latency(ni, ni) = 0, and the bandwidth of the link
bw(ni, nj), where bw(ni, ni) =∞.

C. Deployment

We define the deployment of tasks to the infrastructure’s
components and its relative constraints. Deployment of an
application A over an infrastructure I is a mapping of the
tasks in Ta to the nodes in NI and of the edges in La to the
physical links in LI . A task can be executed either on a mobile
device or offloaded to a Cloud/Edge node. Since dependencies
between tasks impose an order on their execution, deployment
of A over I is performed in different time steps. In each time
step we execute only tasks ti ∈ Ta such that δin(ti, τ) = ∅.
Such tasks are defined as ready. We define as Ta(τ) the set of
tasks in Ta that are ready at time step τ . We define the partial
deployment of tasks Ta(τ) as a set Dτ of pairs (ti, nj), with
Dτ ⊆ Ta(τ)×NI , such that

(ti, nj) ∈ Dτ ⇐⇒ ti is allocated to node nj . (1)

More tasks can be assigned to a computational node, as soon
as node capacity constraints are respected. We define Dτ (ni)
as the set of tasks mapped to node ni at instant τ , namely

ti ∈ Dτ (nj) ⇐⇒ ∃j : (ti, nj) ∈ Dτ . (2)

We define a valid partial deployment for application A on
infrastructure I, Dτ (A, I). A partial deployment is valid only
if (1) all the tasks are deployed only once on the infrastructure
and (2) all deployments of tasks on nodes satisfy the capacity
constraints of the nodes, namely:

Definition 4. A deployment Dτ (A, I) of application A on
infrastructure I is valid ⇐⇒

1)
⋃
nj∈NI

D(nj) = Ta(τ);
2) (ti, nj) ∈ Dτ (A, I), OFF(ti) = 0 =⇒ nj = md;
3) (ti, nj) ∈ Dτ (A, I) ⇐⇒

a)
∑
ti∈Dτ (nj) CORES(ti) ≤ CORES(ni);

b)
∑
ti∈Dτ (nj) RAM(ti) ≤ RAM(ni);

c)
∑
ti∈Dτ (nj) STORAGE(ti) ≤ STORAGE(ni);

d)
⋃
ti∈Dτ (nj) δin(ti, τ) ⊆ δin(ni, τ);

e)
⋃
ti∈Dτ (nj) δout(ti, τ) ⊆ δout(ni, τ);

f) ∀(ni, nj) ∈ δin(ti, τ) latency(ni, nj) ≥
latency(ni, nj), (ni, nj) ∈ δin(ni, τ);

g) ∀(ni, nj) ∈ δout(ti, τ) latency(ni, nj) ≥
latency(ni, nj) (ni, nj) ∈ δout(ni, τ).

We also define a function φ that returns the computational
node where a task ti is executed. Formally,

φ(ti) = nj : ∃(ti, nj) ∈ D(A, I). (3)

Once execution of a task ti terminates at a given instant τ(ti),
it is removed from the DAG and a partial deployment of the
tasks in the set Ta(τ(ti)) is performed. Ta(τ(ti)) is obtained
removing from La all the edges in δout(ti, τ) and adding
to Ta(τ(ti)) all the tasks ti ∈ Ta such that δin(ti, τ) = ∅.
Deployment is complete when Ta = ∅.

We define a complete deployment D(A, I) as the union of
all partial deployments, namely

D(A, I) =
⋃

τ=[0,τend]

Dτ (A, I), (4)

where τend is the time when Ta = ∅.

D. Problem definition

Our goal is to find a valid deployment D(A, I) that opti-
mizes for different objectives. According to objectives selected
in Section II-C, we define offloading in Equation 5.

minRT (D(A, I))
maxBL(D(A, I))
minUC(D(A, I))
With D(A, I)s.t.Definition 4

(5)

Functions RT (D(A, I)), BL(D(A, I)) and UC(D(A, I))
are defined in Equations 6, 11 and 17, respectively

1) Running time: The first goal is to minimize the applica-
tion runtime, that we define as

RT (D(A, I)) = τend, (6)

where τend is the time when Ta = ∅. For each task ti, τ(ti)
depends on the running time of ti on a node ni, namely
RTlocal(ti, ni), and the time for offloading task ti to node
ni, OT (ti, ni). We define RTlocal(ti, ni) as follows:

RTlocal(ti, ni) =
MI(ti)

MIPS(ni)
(7)

Offloading time OTup depends on data transferred to φ(ti) the
bandwidth available between mobile device md and φ(ti). To
offload ti, we need to transfer the binary and the input data
DATAin(ti). We assume that the binary size is proportional to
the number of instructions. Therefore, we define OTup as

OTup(ti) =
MI(ti) · instr size+ DATAin(ti)

bw(md, φ(ti))
. (8)

We assume instr size = 5×10−9 (https://www.strchr.com/
x86 machine code statistics). Conversely, OTdown is the time
to download results from the target node φ(ti):

OTdown(ti) =
DATAout(ti)

bw(md, nj)
, (9)

finally, we define the running time of a task ti as

RT (ti) = τ(ti) +OTup(ti) +RTlocal(ti, φ(ti))

+OTdown(ti), (10)



where τ(ti) is the instant at which the task ti is de-
ployed. If task is executed on the mobile device, RT (ti) =
RTlocal(mi, ni), as bw(md,md) =∞ (See Section III-B).

2) Battery lifetime: Battery lifetime is defined as the per-
centage of energy budget left on device md at the end of the
execution, namely

BL(D(A, I)) = BATTERY(md)− Ed(md,D(A, I))
BATTERY(md)

. (11)

Energy is defined as the integral of the instantaneous power
over time. Therefore, we define energy consumption on the
mobile device md for deployment D(A, I).

Ed(md,D(A, I)) =
∫ RT (D(A,I))

0

∑
ti∈D(md,τ)

Pp(ti, τ)+

+
∑

ti:φ(ti)6=md

Poff(ti, φ(ti), τ) dτ. (12)

Where Pp(md, τ) is the instantaneous power draw for pro-
cessing on mobile device md at the instant t, Poff(ti, τ) is
the instantaneous power draw for offloading task.

a) Mobile device energy consumption model: For energy
consumption of mobile device, we employ the CPU model
designed by [11], described by Equation 13:

Pp(md, τ) =

i<CORES(md)∑
i=0

βfreq(i, τ) · Ucpu(md, τ) + βbase,

(13)
where βfreq(i, τ) is a constant dependent on the frequency of
core i at the instant τ , βbase is a hardware dependent constant
and Ucpu(md, τ) is the CPU utilization of device md at the
time τ , as defined by Equation 14.

Ucpu(n, τ) =
∑
ti∈D(n) MI(ti, τ)

MIPS(n)
(14)

b) Energy consumption for offloading: According
to [12], energy consumption of network transfer has a linear
relationship with the time required to perform the transfer of
the task ti on the node nj . Such relationship depends on the
type of connection between the nodes, the bandwidth available
on the link and if the node is an Edge or a Cloud node. We
employ Equation 15 for energy consumption of offloading:

Poff (ti, nj , τ) = εconn(nj)·Unet(ti, nj , τ)+Kconn(ni), (15)

where εconn(ni) models the relationship between network
utilization and instantaneous power draw and Unet(ti, nj , τ)
is the utilization of network at time instant τ , namely

Unet(ti, nj , τ) =
DATAnet(ti, τ)

bw(md, nj)
, (16)

where DATAnet(ti, τ) is the amount of data offloaded at time
instant τ . Time for transmission between md and nj is calcu-
lated as DATAin,out

bw(md,nj)
+ latency(md, nj). Kconn(ni) represents

a hardware related constant.

3) User cost model: The cost for user depends on where
tasks are executed, the amount of resources used and the
running time. User cost for a deployment D(A, I) is defined
as the sum of the costs each task execution, as in

UC(D(A, I)) =
∑
ti∈A

uc(ti). (17)

At the time we write, finding a pricing strategy for Edge
computing is seen as an open research challenge by [13] and
typical pricing strategies used for Cloud are not applicable to
the Edge contexts [14]. Therefore, we define our cost model
for Edge and Cloud as follows: if a task ti is offloaded on
Cloud, the user pays the price for Cloud resources during
the running time of ti. If the task is offloaded on Edge, the
user will pay the price they would pay on the Cloud, plus a
additional quantity, defined by a function pe, for executing task
on Edge. Such increment is because execution on Edge will
reduce the latency, increasing the value perceived by the user.
Also, providers can ask an higher price for execution on Edge,
due to the additional cost for deploying nodes in proximity of
the user. Therefore, this additional pe should maximize both
provider’s revenue and user satisfaction. We define then the
cost for executing task ti as

uc(ti) =


0, φ(ti) = md

p(φ(ti)) ·RT (ti), φ(ti) ∈ CI
p(φ(ti)) ·RT (ti) + pe(φ(ti), η), φ(ti) ∈ EI

(18)
Where pe depends on a η parameter that models if user prefers
a lower latency or a cheaper price. We define the pe(vi, η)
function in Equation 19.

pe(ti, η) =
Tf (ti)

η
−

√
η · p(M(ti)) + Tf

η2 ·minnj∈EI RT (ti, nj)
, (19)

where Tf =
∑
ni∈CI

latency(md,ni)
|CI | + 1

CORES(ni)
−∑

nk∈EI
latency(md,nk)

|EI | and η is a value between 0.01
and 1, where a value closer to 0.01 means that user prefers
to have lower latency, while a value closer to 1 indicates
that user prefers price over latency. In [15] it is shown that
this function maximizes both providers’ revenue and users’
satisfaction, making it a possible pricing model for Edge.

IV. ECHO APPROACH

Finding a deployment for application A on infrastructure I
is an optimization problem with three objectives, as defined in
Equation 5. Solutions to this type of problems can be found
with multiobjective metaheuristics, such as MOPSO [16]
and NSGA-II [17], or list scheduling approaches like [18].
However, here we propose ECHO (Edge Cloud Heuristic
Offloading), a heuristic based offloading approach similar to
works like [19]. This choice is due to the shorter computation
time in comparison to aforementioned approaches, that makes
it more suitable for offloading of latency sensitive applications.
Deployment process is summarized in Section III-C. The main
activity of this process is selecting a target for the execution



Algorithm 1 ECHO Approach
1: function ECHO(t, α, β, γ)
2: compNodes← compatibleNodes(t)
3: R̂T ←∞, ÛC ←∞, B̂T ← −∞
4: for n ∈ compNodes do
5: if RT (t, n) < R̂T then
6: R̂T ← RT (t, n)
7: end if
8: if UC(t, n) < ÛC then
9: ÛC ← uc(t, n)

10: end if
11: if BL(t, n) > B̂L then
12: B̂L← BL(t, n)
13: end if
14: end for
15: mS ←∞
16: for n ∈ compNodes do
17: if score(n, s, R̂T , ÛC, B̂L, α, β, γ) < mS then
18: mS ← score(n, s, R̂T , ÛC, B̂L, α, β, γ)
19: target← n
20: end if
21: end for
22: return target
23: end function

of a task. The selected target should be capable of optimizing
for all the objectives defined in Section III-D. The idea behind
ECHO is to find a target n minimizing

score(n, s, R̂T , ÛC, B̂L, α, β, γ) = α(RT (t, n)− ˆRT (t))

+ β(UC(t, n)− ˆUC(t)) + γ( ˆBL(t)−BL(t, n)), (20)

where ˆRT (t), ˆUC(t) and ˆBT (t) represent the local optimum
value for each objective, namely the minimum runtime, the
minimum user cost and the maximum battery lifetime. α, β
and γ are user-defined parameters defining how much the user
values that specific objective. The heuristic is summarized
in Algorithm 1. In lines from 4 to 14, we iterate over the
compatible nodes (the nodes that are capable of hosting the
task t) to find ˆRT (t), ˆUC(t) and ˆBL(t). Then, we select
among the compatible nodes the one with the lowest score
(lines 16-21). Score is calculated according to Equation 20.

V. EXPERIMENTAL SETUP

A. Simulation framework

The evaluation of different scenarios is performed through
simulations, because of the unavailability of real-world Edge
infrastructure to perform our experiments. At the time we
write, several simulation frameworks for Edge/Fog comput-
ing has been proposed, such as iFogSim [20] and Edge-
CloudSim [21]. However, they either do not support cyber-
foraging or do not allow us to specify our energy and cost
model. Also, Monte-Carlo simulations are more suited for the
variability of the target environment, according to [22], and
have several applications on DAG scheduling, such as [7],
[23]. For this reason, we decided to extend FogTorchPI [24]
to perform our simulations. FogTorchPI is a Monte-Carlo
simulation framework for selection of the best deployment
for an application on a Fog infrastructure, according to pa-
rameters such as application requirements and QoS provided

by infrastructure. To perform our simulation, we developed an
extended version of FogTorchPI based on the model defined in
Section III. We (1) added support for mobile devices, (2) added
an energy consumption model for mobile devices, (3) included
our cost model, (4) added support for DAG scheduling and (5)
included our offloading model. The extended version of the
framework is available online (https://bitbucket.org/vindem/
fogtorchpi-extended). The input of our Monte-Carlo simula-
tion is the infrastructure setup, consisting of the hardware
characteristics of the computational nodes, including mobile
device, network configuration and QoS, as well as the mobile
application that has to be executed. The simulation is run
1000000 times to ensure a confidence interval of 95%. Since
different deployments can be generated during these runs, due
to the high variability of the simulated environment, we store
all the obtained deployments in a histogram, storing for each
deployment the frequency at which it occurs. We consider only
the deployment with the highest frequency in the histogram
for comparisons of different algorithms.

B. Computational nodes

Our first goal is to compare Mobile Cloud Computing
(MCC) and Mobile Edge Cloud Offloading (MECO). For the
MECO scenario, we set a infrastructure with 1 Cloud node
and 1 Edge node. For the MCC scenario, we set instead a
infrastructure with 2 Cloud nodes, to compare scenarios with
the same amount of computational nodes. We assume that
these amount of nodes is a realistic estimation of the nodes
that are reachable by a mobile device and that is providing
enough resources for execution of selected applications. We
assume that CPU, RAM and storage specifications of Cloud
nodes, as well as mobile device specifications, do not change
during each different run of the simulation. This is because in
real world scenarios, hardware configuration of computational
nodes is rarely changing during one single application execu-
tion. We assume that Edge nodes have less capabilities than
Cloud nodes in terms of cores, MIPS, RAM and storage [10].
The hardware specifications and hardware resources cost for
each node are shown in Table I.

Node Cores RAM Storage MIPS Core RAM Storage
per core cost cost cost

Cloud-* 64 128 1000 15 0.03 0.02 0.01
Edge-* 16 8 250 15 0.03 0.02 0.01
Mobile 2 8 16 4 0 0 0

TABLE I: Hardware configuration.

Concerning mobile device, we need to consider also energy
consumption for the calculation of battery lifetime. We use
the energy model defined by Equation 11, with the energy
consumption coefficients specified by [12]. Coefficients are
summarized in Table II.

C. Network infrastructure

Connections between mobile devices and Cloud/Edge in-
frastructure is often unreliable, due to several environmental
factors and user mobility. Therefore, we need to model this



Coefficient Value
βfreq 6.9320
βbase 625.25e− 6
ε3g 0.025e− 6
K3g 3.5e− 6
εwifi 0.007e− 6
Kwifi 5.9e− 6

TABLE II: Energy coefficients for Equations 13 and 15.

unreliability in our scenario to perform an accurate simulation.
We model the QoS provided by each link li ∈ LI as a
random variable QoS(li) = (latency(li), bw(li)). We assume
that each node is reachable by the mobile device using two
different types of connections: 3G and WiFi. The availability
of the two connections is also determined according to a
random variable. If both are available during the execution,
the faster between the two is selected. For the QoS, we
use the probability distribution of FogTorchPI [24] which is
summarized in Table III.

Connection Availability
QoS profile

ProbabilityLatency Bandwidth
(ms) (Mbps)

3G 0.75
54 7.2 0.9957
∞ 0 0.043

WiFi 0.25
15 32 0.9
15 4 0.09
∞ 0 0.01

TABLE III: Network availability distribution.

latency =∞ and bandwidth = 0 mean that connection is
not available. For Cloud offloading, also Internet transmission
delay has to be considered, that is estimated by [25] to be
between 100 and 300 milliseconds. We model it as a Gaussian
random variable with µ = 200 and σ = 33.5.

D. Mobile applications setup

Rather than typical DAG used for DAG scheduling simu-
lations, we select DAGs of mobile applications, described in
works like [3], [4], [26], [5]. This choice is because these test
cases are more suited for the scenario that we are investigating
than typical scientific workflows used for DAG scheduling
simulations. The DAG structure used for this paper comes
from the description of each application in the aforementioned
works. We select four applications: (1) Navigator, that models
the behavior of a GPS navigation software; (2) Facerecognizer,
that models an image processing application that recognizes
a face in a picture; (3) Antivirus, that models the behavior
of a antivirus software and (4) Chess, that models a chess
game between the user and the phone AI. We select the
first two because they are representative of typical mobile
applications, the Antivirus app to model the behavior of a
data intensive application and Chess to model the behavior
of a computational intensive application. For each DAG, the
darker nodes are the ones that are not offloadable. We describe
each DAG in the following sections.

1) Navigator: The application is described in [8], while
its structure is summarized in Figure 2 and its requirements
are outlined in Table IV. According to our analysis, the
parameter that is mostly affecting application offload is the
size of the map, over which the app computes the path
to reach destination. Therefore, we vary the map size over
map = 25, 50, 100, 500mb, that we observed to be realistic
map sizes handled by mobile navigation applications. These
values are set as 1

λ parameter of the exponential distribution
used to generate different map size for each run. Map size is
used as output data for MAPS task and as input/output for
PATH CALC and TRAFFIC.

Fig. 2: DAG of Navigator app.

Task CPUs MI RAM Storage Input Output
(GB) (GB) data (mb) data (mb)

CONF 1 1
λ
= 1 1 1 5 5PANEL

GPS 1 1
λ
= 1 3 5 5 5

CON 2 1
λ
= 2 3 1 5 5TROL

MAPS 2 1
λ
= 3 5 5 1

λ
= map 1

λ
= map

PATH 1 1
λ
= 5 2 5 1

λ
= map 1

λ
= mapCALC

TRAF 1 1
λ
= 5 1 5 1

λ
= map 1

λ
= mapFIC

VOICE 1 1
λ
= 2 1 5 5 20SYNTH

GUI 1 1
λ
= 2 1 5 1 1

SPEED 1 1
λ
= 2 1 5 10 10TRAP

TABLE IV: Navigator app requirements.

2) Facerecognizer: Facerecognizer app is described in [3].
From the description, we extract the DAG of Figure 3.
According to our study, the parameters affecting the most the
offloading process is the size of the image that application
has to process. The image size is used as input size of
FIND MATCH and DETECT FACE. For these values, we
perform different experiments choosing different values for
1
λ , namely image = {10, 100, 500, 1000}kB. All parameters
are summarized in Table V.

3) Antivirus: Antivirus app is described in [4]. This ap-
plication scans the content of the local file system against
a library of 1000 virus signatures. For this application, the
most impacting parameters are the size of the virus signatures
library and the size of the file to be scanned. For the input



Fig. 3: DAG of Facerecognizer app.

Task Cores MI RAM Storage Input Output
(GB) (GB) data (kB) data (kB)

GUI 1 1
λ
= 2 1 1 1

λ
= image 1

λ
= image

FIND 4 1
λ
= 4 1 1 1

λ
= image 1

λ
= imageMATCH

INIT 4 1
λ
= 4 1 1 1

λ
= image 1

λ
= image

DETECT 4 1
λ
= 8 1 1 1

λ
= image 1

λ
= imageFACE

OUTPUT 1 1
λ
= 4 1 1 1

λ
= image 1

λ
= image

TABLE V: Facerecognizer app requirements.

size of the SCAN FILE component, we perform different
experiments using as 1

λ the values file = {10, 100, 1000}
and 1000 as 1

λ for the output size of LOAD LIBRARY, as
done in [4]. The other parameters are summarized by Table VI.

Task Cores MI RAM Storage Input Output
(GB) (GB) data (kB) data (kB)

GUI 1 1
λ
= 4 1 1 5 5

LOAD 1 1
λ
= 2 1 1 5 1000LIBRARY

SCAN 2 1
λ
= 2 2 1 1

λ
= file 5FILE

COMPARE 1 1
λ
= 2 1 1 1

λ
= file+ 1000 1

OUTPUT 1 1
λ
= 2 1 1 1 5

TABLE VI: Antivirus app requirements.

4) Chess: Chess app is described in [3]. In this application,
what affects the most the offloading decisions is the COM-
PUTE MOVE task, that represents the computation of next AI
move. This task consists in evaluating all the possible moves
and can be a very computationally intensive task. Therefore,
we set the 1

λ for the cores required by the task to and vary the
1
λ for the MI of the task between chess = {5, 10, 20, 40}
to simulate the varying computational requirements. Task
requirements are summarized in Table VII.

Fig. 4: DAG of Antivirus app.

Fig. 5: DAG of Chess app.

Task Cores MI RAM Storage Input Output
(GB) (GB) data (kB) data (kB)

GUI 1 1
λ
= 4 1 1 5 5

UPDATE 1 1
λ
= 2 1 1 5 5CHESS

COMPUTE 4 1
λ
= chess 2 1 5 5MOVE

OUTPUT 1 1
λ
= 2 1 1 5 5

TABLE VII: Chess app requirements.

VI. RESULTS

We describe the simulation results for mobile applications
offloading. The goal is to show how MECO improves per-
formance in comparison to MCC. To this end, we employ
three heuristics: (1) MinMin, defined in [19] that for each
time step, offloads ready tasks in the order that guarantees the
shortest running time; (2) MinCost, that for each time step
offloads ready tasks to the node that guarantees the minimum
user cost (that means, it will select the mobile device, if it
has enough resources available), and (3) MaxBattery, that for
each time step offloads ready tasks to the node that guarantees
the maximum battery lifetime. The results that are shown
in this section are averaged over 1000000 runs, that ensures
us enough statistic significance. We use the metrics defined
in III-D and the parameters identified in V.

A. MECO vs MCC

We perform two sets of experiments: in the first one,
we vary the main parameter of each application (e.g. map
size for Navigator, image size for Facerecognizer, file size
for Antivirus, MI for compute move in Chess) and evaluate
the difference between MECO and MCC for runtime, cost
and battery lifetime. In the second set of experiments, we
fix the application’s main parameter and perform multiple
executions of the applications’ offloadable tasks. For the first
set of experiments, we observe a difference between 1-2%
for all objectives in all applications. This is because in this
case, offloading is performed only once per offloadable task.
Therefore, the effects of MECO are observed only once, with
a limited effect on applications. However, by increasing the
number of runs of the offloadable part, we observe a decrease
of the running time when using also Edge nodes by up to
39% for Navigator, 70.7% Facerecognizer and around 30%
for Antivirus. In Figure 6 we show only the results for Fac-
erecognizer application, for brevity. Results for runtime, cost
and battery lifetime are obtained using, respectively, MinMin,
MinCost and MaxBatt. For Chess application, however, we
do not observe any improvement with MECO: this is because
of the low amount of data transmissions happening on this
application, that reduces the effects of lower latency on run-
time. Conversely, the high improvement in terms of runtime for



Facerecognizer is justified by the high amount of data transfers
during the application’s execution. Regarding cost and battery
lifetime, all applications express trends similar to Facerecog-
nizer results. In Figure 6b we observe that cost depends on η
parameter and the running time. For η = 0.01, for example,
cost of MECO dramatically increases, as this setting generates
higher prices for Edge nodes. For other values, we see that for
a lower number of runs (25-50) MCC is the most economic
alternative, due to the additional price for using Edge nodes.
However, for higher number of runs, MECO becomes the cost-
effective alternative, as the dramatic reduction of runtime has
a positive effect also on the cost for offloading the application.
We observe a similar trend for other applications, with MCC
being the cost-effective alternative until 50 runs for η = 0.1
and a slight decrease for η = 1.0. When increasing the number
of runs, MECO becomes the cost effective alternative also for
η = 0.1. Concerning battery lifetime, we observe an increase
around 3% when using Edge nodes. This is because energy
consumption network transmission is significantly lower than
the energy consumption of computation, therefore reducing the
effects of lower latency on energy consumption. In conclusion,
MECO is recommended for long running applications with
many offloadable tasks, regarding runtime and battery lifetime.
Regarding cost, it depends on the η and the number of runs,
as for some values of η and for less than 50 runs, the runtime
improvement does not payoff the additional cost of MECO.

B. ECHO

In this section we evaluate the performance of ECHO versus
three other heuristics: MinMin, MinCost and MaxBatt. We use
these heuristics to evaluate how the solution selected by ECHO
is close to the value of these other heuristics. We can see
that, for η = 0.01, the trade-off identified by ECHO is either
close to the minimum runtime or to the minimum cost. This
is because the higher price values obtained setting η = 0.01
has a strong effect on the score of each solution: as we can
see from Figures 7a and 8a, the lower difference in terms of
cost causes the heuristic to find a trade-off with a cost closer
to the minimum, causing however a runtime two times higher.
Afterwards, when the difference in terms of runtime increases,
the heuristic selects a runtime closer to the minimum, causing
however a dramatic increase in terms of cost. This can be
fixed by choosing different values for the weight coefficients.
However, for higher values of η, our heuristics is able to
find a solution that almost overlaps with all the other optimal
values, due to the lower difference in prices generated by this
setting of η. In Table VIII we summarize our results for all
applications, calculating the MAPE of our solution between
the optimal value for each objective. We can see that results
are strongly related to the values of weights α, β and γ: in
Table VIIIa, where all objectives have the same importance,
we see that trade-off solution gets a lower MAPE for runtime,
with a negative effect on cost, due to the bigger range over
which runtime values are distributed. However, by giving an
higher importance to cost (an higher β value), we see that
MAPE for cost objective is lower. It is also of note that by

Application RuntimeCostBattery
Navigator 15.97 17.3 0.48

Facerecognizer 18.06 42.5 0.18
Antivirus 10.37 68.1 0.07

Chess 2.48 99.3 0.01

(a) α = β = γ = 1.0.

Application Runtime Cost Battery
Navigator 52.4 4.56 0.48

Facerecognizer 68.75 5.53 0.18
Antivirus 34.29 16.59 0.07

Chess 2.5 3.65 0.01

(b) α = 0.1, β = γ = 1.0.

TABLE VIII: MAPE between results of ECHO and other
heuristics, calculated for η = {0.01, 0.02, 0.05, 0.1, 1.0}

setting α = 1 and β = γ = 0 we obtain the MinMin results,
while for β = 1 and α = γ = 0 the MinCost and for γ = 1
and α = β = 0 the MaxBatt results.

VII. RELATED WORK

Several MCC frameworks have been proposed in [3], [4],
[5], [26], [27], [6], [28]. In [8] an offloading approach based
on model checking is presented. In [29] a programming model
for mobile applications considering MCC is introduced. Pa-
per [30] proposes container-based virtualization for MCC. The
possibility to employ Edge nodes to support mobile application
has been discussed by [31]. In [32] authors focus on reducing
mobile application execution delay using MECO, while [33]
identifies a trade-off between energy consumption and execu-
tion delay. However, both these works target fully offloadable
applications. More similar to our work, in [9] a policy for
partial offloading of DAG-structured mobile applications is
proposed. However, they consider only battery lifetime. Works
like [34], [35] aim at finding a trade-off solution for power and
delay. A discussion of different offloading techniques for the
Edge context can be found in [36]. In addition to these works,
we also consider costs for user. Cost models for the Edge
have been discussed in [15], [14]. DAG scheduling heuristics
are described in [19], [37], while Monte-Carlo simulations for
DAG scheduling are discussed in [7], [22].

VIII. CONCLUSION AND FUTURE WORK

This work’s main contribution can be summarized as fol-
lows: first, we describe MECO as a possibility to enhance
capabilities of mobile devices, considering as objectives run-
ning time, user cost and battery lifetime. Then, we design
a simulation framework and use it to compare MECO and
MCC. Comparison is performed by simulating offloading of
DAG models representing real-world mobile applications and
showing that MECO can reduce mobile application runtime
by up to 70.7% and cost by up to 70.6% with a 3% increase
of battery lifetime. Finally, we propose ECHO, a heuristic
approach for offloading that allows users to find a trade-off
solution between three objectives. As future work, we plan
to investigate different offloading techniques, based on multi-
objective metaheuristics such as PSO and NSGA-II. Also, we
plan to validate the simulator and extend our model by con-
sidering (1) multiple mobile devices, (2) different Edge/Cloud
providers and (3) workloads of mobile applications, based on
the LiveLab [38] traces. Finally, we would like to consider dif-
ferent objectives, such as provider profits and infrastructure’s
energy consumption.
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Fig. 6: Results for Facerecognizer application with increasing executions of offloadable parts.
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Fig. 7: Application Navigator, runtime for different η.
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Fig. 8: Application Navigator, cost for different η.
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Fig. 9: Application Navigator, battery lifetime for different η.



ACKNOWLEDGMENT

The work described in this paper has been funded through
the Haley project (Holistic Energy Efficient Hybrid Clouds) as
part of the TU Vienna Distinguished Young Scientist Award
2011 and Rucon project (Runtime Control in Multi Clouds),
FWF Y 904 START-Programm 2015.

REFERENCES

[1] K. Kumar and Y. H. Lu, “Cloud computing for mobile users: Can
offloading computation save energy?” Computer, vol. 43, no. 4, pp. 51–
56, 2010.

[2] N. Palmer, R. Kemp, T. Kielmann, and H. Bal, “Ibis for mobility:
Solving challenges of mobile computing using grid techniques,” in
Proceedings of the 10th Workshop on Mobile Computing Systems and
Applications, ser. HotMobile ’09. ACM, 2009, pp. 17:1–17:6.

[3] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “Maui: Making smartphones last longer with
code offload,” in Proceedings of the 8th International Conference on
Mobile Systems, Applications, and Services, ser. MobiSys ’10. ACM,
2010, pp. 49–62.

[4] B. Chun, S. Ihm, P. Maniatis, and M. Naik, “Clonecloud: Boosting
mobile device applications through cloud clone execution,” CoRR, vol.
abs/1009.3088, 2010.

[5] M. A. Khan, H. Debnath, N. R. Paiker, N. Gehani, X. Ding, R. Curtmola,
C. Borcea, undefined, undefined, undefined, and undefined, “Moitree: A
middleware for cloud-assisted mobile distributed apps,” 2016 4th IEEE
International Conference on Mobile Cloud Computing, Services, and
Engineering (MobileCloud), vol. 00, pp. 21–30, 2016.

[6] R. Kemp, N. Palmer, T. Kielmann, and H. Bal, Energy Efficient Informa-
tion Monitoring Applications on Smartphones through Communication
Offloading. Springer Berlin Heidelberg, 2012, pp. 60–79.

[7] W. Zheng and R. Sakellariou, “A monte-carlo approach for full-ahead
stochastic dag scheduling,” in 2012 IEEE 26th International Parallel
and Distributed Processing Symposium Workshops PhD Forum, 2012,
pp. 99–112.

[8] L. Aceto, A. Morichetta, and F. Tiezzi, “Decision support for mobile
cloud computing applications via model checking,” in 2015 3rd IEEE
International Conference on Mobile Cloud Computing, Services, and
Engineering, 2015, pp. 199–204.

[9] M. Deng, H. Tian, and B. Fan, “Fine-granularity based application
offloading policy in cloud-enhanced small cell networks,” in 2016 IEEE
International Conference on Communications Workshops (ICC), 2016,
pp. 638–643.

[10] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the internet of things,” in Proceedings of the First Edition of the
MCC Workshop on Mobile Cloud Computing, ser. MCC ’12. ACM,
2012, pp. 13–16.

[11] F. A. Ali, P. Simoens, T. Verbelen, P. Demeester, and B. Dhoedt, “Mobile
device power models for energy efficient dynamic offloading at runtime,”
Journal of Systems and Software, vol. 113, pp. 173 – 187, 2016.

[12] N. Balasubramanian, A. Balasubramanian, and A. Venkataramani, “En-
ergy consumption in mobile phones: a measurement study and im-
plications for network applications,” in Proceedings of the 9th ACM
SIGCOMM conference on Internet measurement conference. ACM,
2009, pp. 280–293.

[13] A. Ahmed and E. Ahmed, “A survey on mobile edge computing,” in
2016 10th International Conference on Intelligent Systems and Control
(ISCO), Jan 2016, pp. 1–8.

[14] M. Al-Roomi, S. Al-Ebrahim, S. Buqrais, and I. Ahmad, “Cloud
Computing Pricing Models: A Survey,” International Journal of Grid
and Distributed Computing, vol. 6, no. 5, pp. 93–106, 2013.

[15] T. Zhao, S. Zhou, X. Guo, Y. Zhao, and Z. Niu, “Pricing policy and
computational resource provisioning for delay-aware mobile edge com-
puting,” 2016 IEEE/CIC International Conference on Communications
in China, ICCC 2016, 2016.

[16] J. Hao, Z. Jin-hua, and C. liang jun, “Multi-objective particle swarm
optimization algorithm based on enhanced ε-dominance,” in 2006 IEEE
International Conference on Engineering of Intelligent Systems, pp. 1–5.

[17] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: Nsga-ii,” IEEE Transactions on Evo-
lutionary Computation, vol. 6, no. 2, pp. 182–197, Apr 2002.

[18] H. M. Fard, R. Prodan, and T. Fahringer, “Multi-objective list schedul-
ing of workflow applications in distributed computing infrastructures,”
Journal of Parallel and Distributed Computing, vol. 74, no. 3, pp. 2152
– 2165, 2014.

[19] B. Li, Y. Pei, H. Wu, and B. Shen, “Heuristics to allocate high-
performance cloudlets for computation offloading in mobile ad hoc
clouds,” J. Supercomput., vol. 71, no. 8, pp. 3009–3036, Aug. 2015.

[20] H. Gupta, A. V. Dastjerdi, S. K. Ghosh, and R. Buyya, “ifogsim: A
toolkit for modeling and simulation of resource management techniques
in internet of things, edge and fog computing environments,” CoRR, vol.
abs/1606.02007, 2016.

[21] C. Sonmez, A. Ozgovde, and C. Ersoy, “Edgecloudsim: An environment
for performance evaluation of edge computing systems,” in 2017 Second
International Conference on Fog and Mobile Edge Computing (FMEC),
2017, pp. 39–44.

[22] W. Nowak, “Introduction to stochastic search and optimization. estima-
tion, simulation, and control,” IEEE Transactions on Neural Networks,
vol. 18, no. 3, pp. 964–965, May 2007.

[23] “A monte carlo algorithm for real time task scheduling on multi-core
processors with software controlled dynamic voltage scaling,” Applied
Mathematical Modelling, vol. 38, no. 7, pp. 1929 – 1947, 2014.

[24] A. Brogi, S. Forti, and A. Ibrahim, “How to best deploy your fog
applications, probably,” in 2017 IEEE 1st International Conference on
Fog and Edge Computing (ICFEC), 2017, pp. 105–114.

[25] M. DeVirgilio, W. D. Pan, L. L. Joiner, and D. Wu, “Internet delay
statistics: Measuring internet feel using a dichotomous hurst parameter,”
in 2013 Proceedings of IEEE Southeastcon, 2013, pp. 1–6.

[26] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “Thinkair:
Dynamic resource allocation and parallel execution in the cloud for
mobile code offloading,” in 2012 Proceedings IEEE INFOCOM, 2012,
pp. 945–953.

[27] J. Flinn, SoYoung Park, and M. Satyanarayanan, “Balancing perfor-
mance, energy, and quality in pervasive computing,” in Proceedings
22nd International Conference on Distributed Computing Systems.
IEEE Comput. Soc, 2012, pp. 217–226.

[28] M. H. Jiang, O. W. Visser, I. S. W. B. Prasetya, and A. Iosup, “Mirror:
A computation-offloading framework for sophisticated mobile games,”
in 2017 IEEE 18th International Symposium on A World of Wireless,
Mobile and Multimedia Networks (WoWMoM), 2017.

[29] F. Lordan and R. M. Badia, “Compss-mobile: Parallel programming for
mobile cloud computing,” Journal of Grid Computing, vol. 15, no. 3,
pp. 357–378, Sep 2017.

[30] S. Wu, C. Niu, J. Rao, H. Jin, and X. Dai, “Container-based cloud
platform for mobile computation offloading,” in 2017 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), pp. 123–132.

[31] L. F. Bittencourt, J. Diaz-Montes, R. Buyya, O. F. Rana, and M. Parashar,
“Mobility-aware application scheduling in fog computing,” IEEE Cloud
Computing, vol. 4, no. 2, pp. 26–35, 2017.

[32] J. Liu, Y. Mao, J. Zhang, and K. B. Letaief, “Delay-optimal computa-
tion task scheduling for mobile-edge computing systems,” CoRR, vol.
abs/1604.07525, 2016.

[33] S. Sardellitti, G. Scutari, and S. Barbarossa, “Distributed joint optimiza-
tion of radio and computational resources for mobile cloud computing,”
in 2014 IEEE 3rd International Conference on Cloud Networking
(CloudNet), 2014, pp. 211–216.

[34] O. Muoz, A. P. Iserte, J. Vidal, and M. Molina, “Energy-latency trade-off
for multiuser wireless computation offloading,” in 2014 IEEE Wireless
Communications and Networking Conference Workshops (WCNCW),
2014, pp. 29–33.

[35] Y. Mao, J. Zhang, S. Song, and K. B. Letaief, “Power-delay
tradeoff in multi-user mobile-edge computing systems,” CoRR, vol.
abs/1609.06027, 2016.

[36] P. Mach and Z. Becvar, “Mobile edge computing: A survey on ar-
chitecture and computation offloading,” IEEE Communications Surveys
Tutorials, vol. 19, no. 3, pp. 1628–1656, 2017.

[37] L. F. Bittencourt, R. Sakellariou, and E. R. M. Madeira, “Dag scheduling
using a lookahead variant of the heterogeneous earliest finish time
algorithm,” in 2010 18th Euromicro Conference on Parallel, Distributed
and Network-based Processing, 2010, pp. 27–34.

[38] C. Shepard, A. Rahmati, C. Tossell, L. Zhong, and P. Kortum, “Live-
lab: Measuring wireless networks and smartphone users in the field,”
SIGMETRICS Perform. Eval. Rev., vol. 38, no. 3, pp. 15–20, Jan. 2011.


