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Abstract—Driven by the rapid advances in Artificial Intelli-
gence of Things (AIoT), billions of mobile and IoT devices are
connected to the internet, generating huge quantities of data at
the network edge. Meanwhile, traditional analytics approaches
such as cloud computing and centralized AI are unable to
manage these massively distributed heterogeneous data primarily
because 1) moving a tremendous amount of data across the
network poses severe challenges to network capacity 2) cloud-
based analytics can result in prohibitively high transmission
delays 3) transporting data containing private information over
the network poses serious concerns for the privacy and may not
even be possible due to regulations like GDPR. Accelerated by
the success of AI and IoT technologies, there is an urgent need
to push AI to the network edge to tap the full potential of big
data.

Index Terms—edge intelligence, machine learning, federated
learning, collaborative learning

I. BACKGROUND

The fusion of AI and edge computing has resulted in a new

paradigm called Edge Intelligence (EI) or Edge AI; it pushes

the intelligence closer to where the data is being produced by

enabling the deployment of machine learning algorithms to

edge devices. On the one hand, edge computing defines the

process of extending computing, storage, and communication

resources from a centralized cloud server to the edge of the

network with the aim of improving the quality of service (QoS)

for mission-critical applications such as connected vehicles,

smart grids, and intelligent traffic management [1]. On the

other hand, the widespread use of AI has revolutionized

a number of application areas, such as autonomous cars,

security and surveillance, time-series forecasting, and language

modeling. The confluence of AI and edge computing has

resulted in the emergence of EI.

II. PROBLEM STATEMENT

Critical applications such as smart health, internet of ve-

hicles (IoVs), and smart environmental monitoring (SEM)

may require performance and privacy assurances, low latency

and faster inference, bandwidth and energy efficiency, and

scalability. In smart environmental monitoring systems, near

real-time analytics are used for condition monitoring, such as

water quality monitoring, helping such systems react promptly

to hazardous materials. In these types of applications, failure

to provide timely decisions will bring catastrophic outcomes;

for instance, in the case of water quality monitoring, delayed

response to the presence of a hazardous chemical may have

severe health and ecological consequences. Another pressing

issue that is core to such applications is privacy; for example,

multiple hospitals that might be interested in collaboratively

training a model may not be inclined or even allowed to share

their private data. The edge AI can respond to these low la-

tency and strict privacy requirements due to its geographically

distributed nature in close proximity to users.

III. RELATED WORK

FedAvg algorithm [2] provides a simple yet effective ap-

proach to keep the training data private since only global

model θt and local model θk is allowed to be communicated

between the server and the clients, all the training data are kept

on the user devices without being accessed either by the server

or other clients. However, the back-and-forth communication

between clients and the server means the network can quickly

become an overhead. Client updates sampling [3], model

compression [4], and quantization [5] are some of the most

common strategies for reducing the communication size.

IV. OVERVIEW OF PROPOSED WORK

We identify several scenarios that could benefit from the

federation of entities/devices to collaboratively train a model,

such as text-to-speech synthesis, condition monitoring, virtual

personal assistant, navigator, and image/video recognition. To

illustrate with an example, smart environmental monitoring

requires deploying tens of hundreds of IoT sensors to monitor

an area of interest. Let us assume that none of these resource-

constrained sensors have the capacity to train a model indepen-

dently. Additionally, training a model per device might lead to

overfitting. The processing time would be reduced significantly

since the devices will only be communicating aggregates over

the network rather than transferring the raw data to the server.

Fig. 1 depicts the proposed Edge AI architecture for the

smart environmental monitoring use case. The first step re-

quires the deployment of IoT sensors at the most critical and

informative locations. The next step entails the deployment of

static or mobile gateways for transferring the measurements

from sensors to edge nodes. The final step involves training

and deploying machine learning models on edge nodes through

the edge-cloud collaboration for processing the collected data
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Fig. 1. Smart environmental monitoring through Edge AI.

and detecting the presence of micropollutants in order to

facilitate the authorities to take swift actions.

V. PRELIMINARY RESULTS

A. Sustainable Environmental Monitoring via Energy and
Information Efficient Multi-Node Placement

Sustainable deployment of sensors for environmental sam-

pling is a challenging task because of the spatial and temporal

variation of the environmental attributes to be monitored, the

lack of the infrastructure to power the sensors for uninterrupted

monitoring, and the large continuous target environment de-

spite the sparse and limited sampling locations.

In this work, we present an environment monitoring frame-

work that deploys a network of sensors and gateways con-

nected through low-power, long-range networking to perform

reliable data collection. The three objectives correspond to the

optimization of information quality, communication capacity,

and sustainability. Therefore, the proposed environment mon-

itoring framework consists of three main components: (i) to

maximize the information collected, we propose an optimal

sensor placement method based on QR decomposition that

deploys sensors at information and communication-critical

locations; (ii) to facilitate the transfer of big streaming data

and alleviate the network bottleneck caused by low bandwidth,

we develop a gateway configuration method with the aim to

reduce the deployment and communication costs; and (iii) to

allow sustainable environmental monitoring, an energy-aware

optimization component is introduced. We validate our method

by presenting a case study for monitoring the water quality of

the Ergene River in Turkey. Detailed experiments subject to

real-world data show that the proposed method is both accurate

and efficient in monitoring a large environment and catching

up with dynamic changes.

B. FedCD: Personalized Federated Learning via Collabora-
tive Distillation [6]

Federated learning enables the creation of a centralized

global model by aggregating updates from the locally trained

models from multiple clients. While powerful, such an archi-

tecture is limited to applications where the needs of hetero-

geneous clients can be served by a single global model. It

does not cater to the scenarios where each client independently

designs its own model. Task and data heterogeneity inherent

to such scenarios demand each client to specialize in the

local setting while still being able to collaborate and transfer

the acquired knowledge to the rest of the federation without

sharing the data or the model.

In this work, we utilize ensemble and collaborative learning

to design a framework that enables the training of personalized

models for heterogeneous clients with different learning capac-

ities using federated learning. Empirical evaluations performed

on the CIFAR100 dataset demonstrate that our framework

is able to consistently improve the performance of all the

participating models and outperform the independently trained

models on the complete training set without collaboration.

We analyze that all participants benefit from collaborative

distillation and boast an average 1.4% increase in performance.

Moreover, a comparison with the state-of-the-art approaches

demonstrates that our framework outperforms the Federated

Learning and Federation Distillation methods by up to a 2×

increase in the average global accuracy.

VI. PLANNED WORK

The path to edge intelligence is filled with numerous

obstacles, such as i) restrictions regarding privacy and la-

tency render centralized model training methods essentially

ineffective, ii) increased energy consumption exacerbated by

decentralized model training, data transmission, and storage

of big data, and iii) system and data heterogeneity inherent

to most IoT applications deteriorate the performance of the

system. We plan to implement novel and autonomic solutions

to the aforementioned challenges.
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[4] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and
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