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Abstract—Smart environmental monitoring is crucial for pub-
lic health and ecological balance as it enables us to monitor and
react to environmental hazards. However, effective environmental
monitoring can be hindered by the lack of infrastructure and high
monetary costs. These challenges are even more pronounced in
remote areas, where networking and energy sources are often lim-
ited or nonexistent. To address these challenges, we utilize UAVs
to form a FANET which can provide effective communication
infrastructure suitable for environment monitoring. Moreover, we
utilize Edge Intelligence at these UAVs to increase the processing
speed and reduce the data size that needs to be transmitted.
Our results show that, compared to statically placed gateways,
our solution is able to attain similar average age of information
for monitoring results while also significantly increasing system
capacity.

Index Terms—Flying Edge Intelligence, Age of Information,
Smart Environmental Monitoring, Flying Ad-Hoc Networks,
Value of Information

I. INTRODUCTION

Environmental monitoring is a crucial aspect of sustain-
able development and preserving our ecosystem and natural
resources. With the rapid expansion of human settlements,
rural areas are increasingly vulnerable to the effects of climate
change, industrial pollution, and other environmental hazards.
Smart environmental monitoring (SEM) [1] allows us to
collect and analyze data on a range of environmental factors.
Moreover, it helps us to identify and address potential health
risks in real-time, compared to time-consuming and expensive
traditional methods. This is particularly critical in the case
of unexpected events such as natural disasters or industrial
accidents, where rapid and accurate responses are crucial.
However, the vast and diverse nature of rural environments
entails several challenges that need to be overcome in order
to enable effective SEM.

One of the core challenges of deploying SEM systems
in rural areas is their logistic complexity of setting up and
maintaining such systems. Rural areas often have limited
infrastructure and resources, making it difficult to install and
operate the sensors which negatively impacts the ecological
balance of the environment. On the other hand, data collection
and processing systems, and communication networks that are
required for effective monitoring. In addition, the dispersed

and often remote nature of rural environments makes it dif-
ficult to ensure the reliability and accuracy of data collected
by these systems. Furthermore, the size of these environments
and their corresponding data size severely limits the bandwidth
of wireless transmissions, which limits the scalability of SEM
systems.

SEM systems typically consist of multiple IoT devices
(sensors) and a remote cloud server. For remote areas mon-
itoring, IoT devices are connected to the gateways in order
to allow the data transfer between sensors and the server.
In the existing SEM systems, the gateways are deployed
in the locations chosen either randomly or through a data-
driven approach [2]. The static placement of gateways can
have several disadvantages. First, it may result in limited
coverage if the gateways are not placed strategically. Second,
it can be difficult to scale up or down the monitoring area
based on dynamic requirements. Finally, maintenance can be
challenging, especially in remote or hard-to-reach areas. We
aim to overcome these issues by converting static gateways
into mobile ones using unmanned aerial vehicles (UAVs).

Instead, by installing these gateways on UAVs, it is pos-
sible to deploy monitoring systems quickly and more cost-
effectively over large areas by creating Flying Ad-Hoc Net-
works (FANETs), without the need for extensive infrastructure
or other resources. Furthermore, the customizability of UAVs
allows us to configure them with different communication
standards, on-board computing units and, multiple sensors to
create Flying Edge Intelligence (FEI). Thus, we can adapt
existing UAV deployments to different environments easily,
which decreases their deployment and maintenance costs.
Also, the altitude of the UAVs results in line-of-sight commu-
nications that results in more robust communication channel
which has less fading effects [3]. As a result, each edge node’s
(UAV’s) coverage improves. This allows for the deployment
of fewer edge nodes, which reduces the number of potential
points of failure in the system.

In the proposed FEI assisted SEM (FEI-SEM) system in
figure 1, edge nodes collect data from sensors in order to
extract additional information and shrink the data size with
EI processing when their data pool reaches a certain size.
This processing also allows them to compensate normally
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Fig. 1: The proposed FEI-SEM System.

wasted fly-time. Then, the edge nodes forward the results
to the SEM server. To ensure optimal performance, it is
important to optimize the data collection process at the edge
nodes, so that the data pool is diverse and fresh at each
iteration. To achieve this, our unique data aggregation method
makes each edge node periodically seek to aggregate their
data pools with their neighbors, aiming to both increase data
quality and decrease Age Of Information (AoI). They select
best neighbor by considering, its data pool’s geographical
dispersion, chronological relevance and distribution fairness.
They also consider the AoI impact that a given data pool would
make by the time it reaches the SEM server by utilizing well
known Value of Information of the Update (VoIU) metric [4],
[5].

Our contributions in this paper can be summarized as
follows:

• We propose FEI-SEM system that provides increased
coverage, capacity and decreased AoI compared to stati-
cally placed gateways.

• We propose data pool aggregation scheme, QADA, for
FEI-SEM systems, that increases quality of the collected
data while reducing its overall AoI.

• We run a detailed analysis through exhaustive OMNET++
simulations, where we compare different topologies,
event types, and infrastructures.

The rest of this paper is organized as follows: In section
II we introduce our method. In section III we present our
evaluation results. Following in the section IV we discuss state
of the art for FEI. Lastly in section V we conclude this paper.

II. QUALITY AWARE DATA AGGREGATOR (QADA)

In this section, we derive our proposed data pool aggregation
scheme and table I shows our notation in our equations. To
speed up the data collection process our Quality Aware Data
Aggregator (QADA) makes each edge node decide whether
to wait for new data or to aggregate its own data points with
one of its neighbors every τ seconds. Ultimately, the main
objective, defined in (1), is maximizing the quality of the
message mk both in terms of timeliness and intelligence.

TABLE I: Notations

Notation Meaning
B Data Pool Size
Smk Data Pool of mk

S Set of all Sensors
si Sensor i
E Set of all Edge Nodes
ek Edge node k
U(mk, t) Utility of message mk at time t
QA(mk, t) VoIU of mk at time t
QI(mk) Intelligence Quality of mk

Qloc(mk) Location Quality of mk

Qage(mk) Age Quality of mk

∆A(mk) Maximum Age Difference in mk

QJ (mk) Fairness in mk

∆Tk(t) Time to Server for ek’s data pool
∆T ′

k(t) Time to Server after aggregation
∆Pk(t) Data pool fill time of ek
∆P ′

k(t) Data pool fill time after aggregation
Rk(t) Average fill rate of ek
∆Lk(t) Routing time to Server
Nk(t) Neighbors of ek
N ′

k(t) Potential Aggregators of ek
Dj(t) ej ’s Data pool fullness at time t

U(mk, t) = c1 ·QA(mk, t) + c2 ·QI(mk) (1)

Where c1 and c2 are weighting factors for sub-objectives
and, c1, c2 ≥ 0 and c1 + c2 = 1.

A. Value of information update (VoIU)

Our FEI-SEM system has multiple sensors that it needs to
track. Thus, the AoI of each sensor needs to be minimized.
QA(mk, t) measures the VoIU metric of each message at the
time it arrives at the server. The server contains a vector Ak(t)
which stores the current ages of all sensors that belong to S
as in (2) where ∆uk,sn shows the latest sampling time of the
kth sample for sensor sn.

Ak(t) =


ps1,k(t)

.

.
psn,k(t)

 , psi,k(t) =

{
psi,k−1(t) si ̸∈ Smk

t−∆uk,si otherwise

(2)
Then, we can calculate the value of each update as the L2

norm of the age vectors as in (3). Using L2 norm causes older
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data to contribute more to the norm which also encourages
improving the age of the oldest sensors.

QA(mk, t) =
∥Ak−1(t)−Ak(t)∥2
∥Ak−1(t)∥2

(3)

B. Quality of Intelligence

In order to create meaningful results, the data batch should
include points that are relevant to each other, both geo-
graphically and chronologically. To capture the quality of
geo-distribution, we utilize intra-cluster dispersion used in
Caliński-Harabasz index [6]. This index is basically a measure
of how each cluster is packed (intra-cluster dispersion) and
how far away the resulting clusters are from each other (inter-
cluster dispersion). Since we are concerned with only one
cluster, the samples inside the data pool, we omit the inter-
cluster parts. Following this, we can calculate intra-cluster
deviation (σmk

) of the data batch simply by taking intra-cluster
dispersion square root and dividing it by B − 1. Moreover, if
intra-cluster-deviation is 0, this means that all the points inside
the data batch are from a single sensor. Which severely limits
the analysis quality of the batch. On the other hand, if intra-
cluster dispersion is too high, then this means that the data
points are from a large, unrelated area which again limits the
analysis quality. Thus, we define the location quality Qloc(mk)
of the data batch for message mk as shown in (8). Which
consists of a Gaussian that measures how close intra-cluster
deviation (σmk

) is to the target deviation. Lastly, µ0 and, σ0

are the scaling factor of this Gaussian.

Qloc(mk) = e−(
σmk

−µ0
σ0

)2 (4)

As a result of (8), if the intra-cluster deviation of the batch
coordinates are close to σ0, then for our use case, its geo-
distribution quality is high. Next, we look at the chronological
relevance for a data batch using the age difference between the
freshest data point and the oldest data point (∆A(mk)) in (5).

∆A(mk) = max1≤j≤k≤|Smk
||pi(t)− pj(t)| (5)

Then, we derive the age quality of the data batch (Qage(mk)
in (6) by utilizing reverse sigmoid function that has smaller
derivative.

Qage(mk) = (1 + e∆A(mk))−1 (6)

As a result, the analysis quality of the data batch increases
as the samples inside are created at relevant times.

Lastly, to also consider data imbalance we also calculate
QJ (mk), which is the Jain’s Fairness Index that utilizes data
point count per sensor in mk as in (7). Where, nsi shows the
number of samples collected from sensor si.

QJ (mk) =

(∑
si∈Smk

nsi

)2
B ·

∑
si∈Smk

n2
si

(7)

It measures evenness of the distribution of the points for
a given batch. If a batch has a skewed distribution where it
has multiple samples from the same sensor, this decreases the

fairness of the data batch. Then, we formulate QI(mk, t) in
(8) as the geometric mean of sub-parts of intelligence quality.

QI(mk) = GM
(
Qage(mk), Qloc(mk), QJ (mk)

)
(8)

C. Data Aggregation Protocol

To improve the utility of the system, we employ a distributed
approach by either waiting for data pool to fill or, forwarding
current pool to neighbors to be aggregated and processed. Edge
nodes make this decision by estimating time it would take
them to send their messages to server which is denoted by
∆Tk(t) for edge node ek, as in (9).

∆Tk(t) = ∆Pk(t) + ∆Lk(t) (9)

Here, ∆Pk(t) denotes estimated time that would take to fill
the data pool of edge node ek for current time. Additionally,
∆Lk(t) is the estimated routing time to server for location of
ek at time t. Our algorithm calculates ∆Pk(t) as in (10).

∆Pk(t) =
Dmax −Dk(t)

Rk(t)
+ dproc (10)

Where ∆Pk(t) shows when edge node k will acquire M
data points for given time instance t and will process them
for µproc seconds. Dk(t) shows current data point count
and Rk(t) is the estimated incoming data rate depending on
trajectory of the edge node k. Since edge nodes are moving
fast and decision time (τ ) is smaller than overall data point
creation time, using static fill rate for a given time reduces
accuracy of the estimation. Instead, we dynamically estimate
incoming data rate by having looking ahead n · τ seconds and
taking the average incoming data rate as shown in (11). Where,
Rk(t) is average data collection rate and Rk(t) current data
collection rate of edge node ek which utilizes data arrival rates
(λ) of neighboring sensors.

Rk(t) =
1

n+ 1

n∑
i=0

Rk(t+ i · τ) (11)

Aside from calculating the expected pool filling time, we
also have to consider expected latency to the server. We
compute this delay in a simple fashion as in (12) by extracting
hop count (l(ek, t)) from the routing tables.

∆Lk(t) = l(ek, t) · dhop (12)

Next, we develop a greedy algorithm that opportunistically
seeks best neighbor to combine data points with. Basically,
every τ seconds, an edge node will select the neighbor that
reduces time to server sufficiently while providing the best
expected utility weighted against its capacity. Edge nodes can
only make aggregation decisions if their sample count is higher
than δD. Then, each edge node selects edge nodes from its
neighbors (Nk(t)) that provide less than or equal to routing
delay to ek at time t. In other words, potential aggregator set
(N ′

k(t)) does not include edge nodes that increase the routing
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time to server as in (13). With this constraint, we enforce the
aggregation direction towards the server.

N ′
k(t) = {ej ∈ Nk(t) : ∆Pj(t) ≤ ∆Pk(t)} (13)

Following this, QADA finds the best neighbor that provides
best maximum weighted aggregated utility as in (14). If the
set N ′

k(t) is empty, then ek skips the aggregation for time t.

argmax
ej∈N′

k
(t)

{
Dj(t) · Uj(t+∆T ′

j(t)) +Dk(t) · Uk(t+∆T ′
j(t))

}
(14)

Where ∆T ′
k(t) is the estimated time to server after aggre-

gation. We simply formulate this as summation of estimated
time that edge node ej needs after combining its pool with ek,
estimated time it would take to route to the server from edge
node ej and time it takes to transmit data points from ek to
ej in (15).

∆T ′
k(t) = ∆P ′

k(t) + ∆Lk(t) + dhop (15)

Algorithm 1: Highest Quality Aggregator Selection.
input : ek
output: bestNeighbor

1 if Dk(t) > δD then
// Initialize parameters for comparison.

2 bestUtility← 0
3 bestNeighbor← ∅

// Loop Potential Aggregators eq. (13)

4 foreach j where ej ∈ N ′
k(t) do

5 D′
j(t)← Dmax −Dk(t)−Dj(t)

6 if D′
j(t) > 0 then
// Get estimated fill time, eq. (11)

7 Rj(t)← getAverageRate(ej)

8 ∆P ′
j(t)←

D′
j(t)

Rj(t)
+ dproc

9 else
// They do not need more data points.

10 ∆P ′
j(t)← dproc

11 ∆Lj(t)← expectedRoutingTime(ej)
// Calculate estimated time to server

eq. 15.

12 ∆T ′
j(t)← ∆P ′

j(t) + ∆Lj(t) + dhop
// Calculate aggregated utility.

13 aggrUtility← getAggrUtil(ej , ek,∆T ′
j(t))

// If it has sufficient minimum utility.

14 if aggrUtility > δv then
// If its quality is better.

15 if bestUtility < aggrUtility then
16 bestUtility← aggrUtility
17 bestNeighbor← ej

18 return bestNeighbor

We present our algorithm 1 which describes a process for
selecting the highest quality neighbor to aggregate data with,
given a current edge node ek. First, the algorithm checks if the
data buffer of the current edge node ek exceeds a threshold
δD. If an edge node does not have enough samples, it can not
start aggregation process. Following this, our algorithm loops
over the neighboring edge nodes of ek to find best neighbor. If
a neighbor requires more hops than ek, the algorithm excludes
this neighbor from the potential aggregators set. Then for
each neighbor it calculates the needed data point count after
combining data pools in line 8. If this value is negative, it
means that combined capacity is higher than batch size and
therefore, eN will not need more data points after aggregation.
Thus, ∆P ′

N will be 0 after aggregation (line 13). Next, it
calculates estimated time to server after aggregation in line
14. One thing to notice here is, we also need to consider time
it takes to transfer data pool to new neighbor thus, we also
add dhop. Next, the algorithm naively calculates utility of the
potential aggregator using the equation 1 for its own data pool.

Finally, if the potential aggregator results at least δv more
aggregated utility, algorithm considers it the best neighbor.
Following this, ek sends its data pool to this neighbor to be
aggregated. To enable calculations that require more knowl-
edge that an edge node has (lines 5, 7, 8, 11, 13, 14) the ground
controller in the system must periodically broadcast relevant
mission data from the control link as shown in the figure 1.
For starters, it periodically broadcasts age vector off all sensors
to all edge nodes in the area. On the other hand, edge nodes
also notify the ground controller about their location, current
capacity and estimated utility. Only then, the algorithm 1 can
function properly since, it requires these global information to
be known.

III. PERFORMANCE EVALUATION

Our evaluation methodology consist of creating detailed
OMNET++ simulations with INET framework. In this setup,
we consider multiple sensors distributed throughout the 25
km2 area which broadcast their data periodically. These broad-
casts then picked up by edge nodes around the environment
to be processed and forwarded to cloud in the case of an
emergency. In our simulations, we also test static gateways
placed throughout the site to create a robust baseline using
SWAIN1 project as inspiration. For this case, the gateways
have satellite communication capabilities. Also, since they
have much lower altitude compared to UAVs, they experience
fading effects higher than the UAVs [3]. Thus, enhanced
fading effects reduce their coverage. To model these effects
accurately, we employ log-normal model. According to many
comprehensive studies [3], [7], [8] log-normal performs well
for both satellite, air-to-ground and forest communication
links. For our simulations, we take pathloss exponent 2.4 with
standard deviation of 1.5 for the cases with UAVs and, 2.7
with standard deviation of 6 for static gateways in the area.

1http://swain-project.eu/
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Fig. 2: Simulation Results.

We have 3 cases which utilize UAVs: FANET, Random-
FANET and QADA-FANET. In FANET, UAVs circle random
centers throughout the mission area and listen for sensor
broadcasts. When they process their data pools, they forward
it to base station via AODV routing protocol. QADA-FANET
case uses algorithm 1 to opportunistically select which neigh-
bor to aggregate. For each new simulation seed, gateways and
IoT sensors take random coordinates. Mobility for the cases
with UAVs is different. For starters, all UAVs have same radius
for their circular trajectories but their centers are randomly
distributed. Additionally, the rest of the simulation parameters
are in table II.

Our initial simulations start with the average age measure-
ments for given simulation cases in figure 2a. The results show
that the reduced communication range of the statically placed
gateways in the ground severely reduces their ability to track
the overall environment. FANET cases, on the other hand, can
provide fresh data to server. QADA-FANET, reduces overall
AoI by additional 18.1% compared to FANET as it fills its
data pool faster by opportunistically aggregating data pools.

Next, we look the average maximum age of the system
in figure 2b. Similarly, due to their limited ranges, Static
Gateways can not track the environment effectively and as

TABLE II: Simulation parameters

Parameter Value
Capacity Threshold (δD) 0.1
Cluster Deviation (µ0) 400 m
Cluster Deviation Mean (σ0) 400 m
Data Pool Size (B) 24 samples
Decision Period (τ) 2 s
Gateway Count 10-30
Hop Delay (dhop) 200 ms
Look-ahead horizon (n) 5
Processing Delay (dproc) 250 ms
Satellite Comm. Delay 300 ms
Sensor Data Arrival Rate (λ) 0.2 / s
Sensor Count 100
Trajectory Radius 500m
UAV Altitude 50-250 m
UAV Speed 30-50 m/s
Utility Gain Threshold (δv) 0.03
Weight of QA (c1) 0.9
Weight of QI (c2) 0.1

a result, they have the highest data age. Because of VoIU-
based aggregation, QADA results in lower AoI compared to
FANET case. Following this, we examine sample collection
rate of the simulation cases in the figure 2c. The reduced data
pool fill time of the QADA substantially increases its sample
throughput compared to other cases. This means that QADA
collects more fresh data compared to other methods. Next,
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we take a look at the VoIU of the messages that reach to the
server for all methods in figure 2e. As expected, updates of
QADA has the highest VoIU. Because of this, it can increase
the throughput gracefully, without increasing the overall AoI.
Static Gateways provide less VoIU because its resulting data
pools are less diverse and therefore updates carry information
about fewer sensors.

In figure 2d, we measure monitoring fairness of the methods
using Jain’s Fairness index as in (7). This shows us how
proposed methods distribute their resources to track all sensors
evenly by using total number of collected points per sensor.
The superior coverage of the FANET based result in more fair
tracking than the Static Gateways in the ground. Lastly, we
look at the Intelligence Quality of the messages in the figure
2f which shows the same trend as the previous measurements.
Static Gateways suffer from reduced coverage, FANET case
improves this substantially and, by utilizing quality focused
aggregating QADA provides even better intelligence Quality.
While concluding the evaluation of the methods, we can con-
clude that it requires a higher number of Static Gateways in the
ground to provide relatively similar performance to FANET
based cases. Which is not viable due to increased deployment
costs coupled with increased ecological disturbance.

IV. RELATED WORK

Flying Edge Intelligence/Computing (FEI/FEC) for IoT
systems has been explored in the literature. The main approach
in the literature is optimizing/exploiting the locations of the
UAVs while considering mission goals. [9] explores energy
efficiency and system throughput tradeoff for UAV-IoT sys-
tems. After formulating the UAV-IoT data collection problem,
they use particle swarm optimization (PSO) method to find
optimal UAV altitude, speed and optimal frame length while
considering energy efficiency and system throughput. Simi-
larly, the work [10] also formulates UAV assisted MEC system
performance while focusing on the completion time and the
energy usage of the system. Then, it calculates optimized
flight route that maximizes throughput while minimizing the
completion time and energy usage by utilizing Sine Cosine
Algorithm (SCA). By utilizing MEC, [11] formulates a closed
form solution to minimize response delay from Edge nodes.
They consider UAV distributions, and computation capabilities
such as number of virtual machines in the deployment to
reduce service delay of the deployment. On the other hand,
[12] proposes RL based dynamic staleness control algorithm
that achieves effective information dissemination that mini-
mizes AoI while maximizing value of received data. Lastly,
authors of [13] develop UAV assisted Real Time Air-Quality
Monitoring System for Landfills. In their deployment, UAVs
collect the data and upload it to the cloud via long range Wi-Fi
links. Additionally, the authors share their comprehensive air
quality measurements.

Different from these works, we utilize FANETs to increase
SEM system coverage over rural areas compared to statically
placed gateways in the environment. Moreover, we are the first
to combine EI processing with collaborative approach between

UAVs with by considering intelligence quality of the collected
points and their age of information impact to improve AoI,
data quality and sample rate of the SEM system.

V. CONCLUSION

In this work, we introduced an Quality Aware Data Ag-
gregator (QADA) that opportunistically combines data from
different edge nodes in Flying Edge Intelligence assisted Smart
Environmental Monitoring System (FEI-SEM). With QADA,
every edge node of FEI periodically evaluates their data pool
quality and informs the ground controller. Then, considering
the expected utility by the time their data reaches to the server,
Edge Nodes select best peer to aggregate their data pools to
speed up the data collection process while also considering
the aggregated data pool’s quality. They also take the data
ages of the sensor’s into account to provide data pools with
most freshness impact. QADA, achieves lower overall age of
information for sensor data while also increasing the overall
intelligence quality.
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[6] T. Caliński and J. Harabasz, “A dendrite method for cluster analysis,”
Communications in Statistics, vol. 3, no. 1, pp. 1–27, 1974.

[7] S. Kurt and B. Tavli, “Path-loss modeling for wireless sensor networks:
A review of models and comparative evaluations.” IEEE Antennas and
Propagation Magazine, vol. 59, no. 1, pp. 18–37, 2017.

[8] X. Guo and C. Zhao, “Propagation model for 2.4 ghz wireless sensor
network in four-year-old young apple orchard,” International Journal of
Agricultural and Biological Engineering, vol. 7, pp. 47–53, 12 2014.

[9] X. Lin, G. Su, B. Chen, H. Wang, and M. Dai, “Striking a balance
between system throughput and energy efficiency for uav-iot systems,”
IEEE Internet of Things Journal, vol. 6, no. 6, pp. 10 519–10 533, 2019.

[10] C. Zhan, H. Hu, X. Sui, Z. Liu, and D. Niyato, “Completion time and
energy optimization in the uav-enabled mobile-edge computing system,”
IEEE Internet of Things Journal, vol. 7, no. 8, pp. 7808–7822, 2020.

[11] Q. Zhang, J. Chen, L. Ji, Z. Feng, Z. Han, and Z. Chen, “Response
delay optimization in mobile edge computing enabled uav swarm,” IEEE
Transactions on Vehicular Technology, vol. 69, no. 3, pp. 3280–3295,
2020.

[12] A. Aral, M. Erol-Kantarci, and I. Brandić, “Staleness control for edge
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