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Abstract. To address increasing demands of computational resources,
scientific applications started to support different type of hardware accel-
erators, e.g., GPUs, TPUs, ASICs. However, due to the limitation to
scalability of hardware resources posed by the Moore Law, a conspicu-
ous amount of research is focusing in integration of Quantum Computers
in the overall computing continuum. The high amount of data and the
high heterogeneity of quantum architectures necessitate development and
integration of additional hardware/software layers to facilitate integra-
tion of quantum hardware into the overall computing continuum. In this
work, we discuss the possibility of applying edge computing to address
this issue, laying the fundamentals to the concept of the Quantum Edge.
Further, we present and analyse a drug design use case, identifying chal-
lenges and future research directions for Quantum Edge.
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1 Introduction

Scientific applications are used by scientists from different domains to simulate
complex scientific phenomena and speed up research in different fields. Typi-
cal examples of scientific applications are molecular dynamics [14], material sci-
ence [8], and drug design [4]. Due to their high computational demands, scientific
applications rely on HPC resources [15] for their execution.

However, we are currently entering the Post-Moore era, which poses serious
limitations to scalability of classic HPC systems. Considering the growing storage
and analytics demands, scientific computing recently focused in exploiting differ-
ent specific-purpose hardware accelerators. Accelerators include devices such as
TPU, GPUs, FPGAs and ASICs, each one designed for a very specific problem
and with its own specific limitations. To further improve capabilities of future
HPC systems, a considerable amount of research is considering the exploita-
tion of so-called Non-Von Neumann architectures, such as Neuromorphic and
Quantum Computing [12].
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Among Non-Von Neumann architectures, quantum computing clearly stands
out, due to characteristics such as (1) theoretically proven speedup for many
computationally-intensive problems, (2) natural 3D modelling of different scien-
tific problems, and (3) wide availability of different quantum systems and frame-
works [24]. At one hand quantum computing can provide significant speedup to
many scientific computations, such as computational chemistry, combinatorial
optimization and drug design. On the other hand, current state-of-the-art NISQ
(Noisy Intermediate Scale Quantum) architectures suffer from drawbacks, such
as limited number of qubits and high amount of error, limiting adoption of quan-
tum computing on a larger scale.

Hybrid classic/quantum systems target integration of classic von Neumann
hardware with quantum hardware. The main idea of hybrid classic/quantum
systems is to use the classic HPC facilities for the preparation of the input data,
adaptation of the classic code for the execution on the quantum machine and
for the data post processing. The quantum machine is utilized for the execution
of very specific program parts that can benefit from the quantum architecture.
Once a program is executed on the quantum hardware, classic hardware will
perform error correction on its output. However, how to deal with issues such
as management of streaming data, privacy and integration between classic and
quantum hardware still remains an open challenge.

Edge computing has proven effective in addressing challenges of processing
streaming data [11,12], as well as ensuring privacy of geographically distributed
systems [20]. Therefore, in this work we investigate the use of Edge computing
to address challenges of integrating quantum in the computing continuum.

First, we describe our target use case and identify which components would
benefit from quantum execution. Afterwards, we identify challenges of execut-
ing target use case on hybrid classic/quantum systems. Finally, we define our
concept of Quantum Edge and describe which Edge computing methodologies
could be applied to our specific use case. To demonstrate the applicability of
Edge Computing in hybrid systems we focus on a computer-assisted drug design
use case, which is one of the widely used applications in scientific computing [2].

The paper is organised as follows: First, we introduce background notions
in Sect. 2 and our target use case in Sect. 3. In Sect. 4, we identify challenges
towards implementation of current use case in hybrid classic/quantum systems.
The concept of Quantum Edge is described in Sect. 5. Finally, we describe related
work in Sect. 6 and conclude our paper in Sect. 7.

2 Background

2.1 State of the Art in Scientific Computing

Scientific computing is a branch of computer science, spanning different disci-
plines (i.e., finance, biology, chemistry, engineering) with the goal to develop
standardized, robust and accurate simulations of different phenomena. Simula-
tions can be decomposed in tasks (i.e., aggregate data from different sources,
average a set of samples). Tasks can be combined into workflows, represented
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as DAGs (Directed Acyclic Graphs) [1] where edges model interdependen-
cies between tasks. Data-intensive workflows are defined as extreme-data work-
flows [11].

Current research trends in scientific computing go towards the convergence
of artificial intelligence, data science and physical simulations [5], which rely on
HPC systems for their execution. However, given the limitation to hardware scal-
ability posed by the Post-Moore era, together with the increasing data that have
to be processed and growing computing demands of scientific applications, sci-
entific community is faced with the challenge of scaling HPC capabilities beyond
limitations of Von Neumann’s architectures [10].

2.2 Hybrid Classic/Quantum Systems

1. d′ ← encode(d)
C′ ← transpile(C)

2. ψ(d′) 3. execute(C′, ψ(d′)) 4. o ← measure(C′)

5. o′ ← postprocess(o)

repeat(s)

Quantum System

Classic System

s

o′(d, C)

Fig. 1. Hybrid Classic/Quantum Systems.

Hybrid Classic/Quantum Systems define a class of systems that combine
classic and quantum computers to solve a problem. The main advantage of this
approach is the exploitation of classic computers for specific tasks (e.g., error
correction, data encoding) and capabilities provided by quantum machines [24].

Hybrid quantum systems are depicted in Fig. 1: in step 1, data d are encoded
on the classic system for execution on the quantum system. At this stage, differ-
ent data encoding techniques [26] can be applied to transform input in a quantum
state. Also, high level circuit description C is transpiled [27]; in step 2, quantum
state ψ is prepared based on encoded data d′. In step 3, circuit C ′ is executed
with the given input. Execution and measurement (step 4) are performed s time,
due to the intrinsic nondeterminism of quantum computation, in order to create
a probabilistic distribution of the output. Finally, in step 5, postprocessing of
the output o is applied. Postprocessing can range from error correction [23] to
noise mitigation [22], to address limitation of current NISQ (Noisy Intermediate
Scale Quantum) machines.
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3 Use Case: Computer-Assisted Drug Design (CADD)

Traditional drug design is a long, complex and costly process, with huge
impact on pharmaceutical companies profit, as shown by the recent pandemic.
Computer-Aided Drug Design (CADD) provides a variety of tools and methods
that assist in the various stages of drug design, i.e., (1) discovery of a candidate
drug, (2) evaluation of efficacy and safety and (3) drug-target interactions sim-
ulations. Recent development of quantum computing affected many branches of
scientific computing, including CADD [7].
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Design
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Fig. 2. A Hybrid CADD Workflow.

Figure 2 shows an example CADD hybrid workflow exploiting quantum
machines. CADD is a multidisciplinary process, which involves experts from
biochemistry, molecular biology, cell biology, bioinformatics and HPC scientists.
To this end, typical CADD systems allow collaborations of different teams [18].
Also, CADD involves different families of techniques, namely structure-based
drug discovery [3] and ligand-based drug discovery [13]. ML-based techniques
are widely applied in both cases [18,19].

All identified CADD techniques require processing of large datasets, such
as ChEMBL (https://www.ebi.ac.uk/chembl/) and DrugBank (https://go.
drugbank.com/). Also, CADD relies on accurate simulation of target interac-
tions, as well as computation of ground state for weakly-interacting molecules.
Such simulation rely on molecular dynamics (MD) simulations and require a huge
amount of computational resources, which is provided by remote distributed clus-
ters [15]. However, as proven by [4,10], MD simulations are a very common use
case of quantum computing, due to the fact that molecular interactions can be
easily modelled by quantum mechanics. Moreover, different computation that are
employed by CADD, such as eigenstates calculation, approximate optimization
and quantum machine learning, can be easily mapped to Variational Quantum
Algorithms, the main candidates to achieve the quantum advantage [8].

https://www.ebi.ac.uk/chembl/
https://go.drugbank.com/
https://go.drugbank.com/
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3.1 Current Limitations of Hybrid Classic/Quantum CADD

From our analysis, we conclude that executing CADD on hybrid classic/quantum
systems can not only allow to overcome the scalability limits of HPC systems,
but also to simulate processes that cannot be easily simulated by classic HPC [7].
However, several additional layers between HPC and quantum systems are nec-
essary to enable a seamless integration between classic and quantum nodes, to
address challenges arising from their integration.

First of all, current quantum hardware requires very specific facilities, which
are not accessible to common data centers. This causes a higher degree of geo-
graphical distribution, which hinders latency of communication between classic
and quantum systems. Moreover, due to the need of continuous data exchange
between quantum and classic hardware, a hardware/software layer focused on
encoding data coming from datasets/sensors for their use on quantum hard-
ware, and for streaming results from quantum hardware to HPC systems for
further processing, would significantly speed up data processing in hybrid clas-
sic/quantum systems. This additional layer could also be used for filtering and
preprocessing data to further improve efficiency of streaming data. In the next
sections, we will analyze some challenges of hybrid classic/quantum systems,
coming from our analysis of CADD.

4 Challenges

4.1 Efficient Data Encoding

CADD requires continuous interaction with different pharmaceutical datasets,
in order to evaluate target interactions. Information coming from different
databases has to be encoded into a quantum state to enable processing by dif-
ferent quantum algorithms (Sect. 2.2).

Efficiency of data encoding is critical for CADD, since it might constitute
a bottleneck in the quantum processing and potentially cancel the effect of a
quantum speedup [26]. This is specifically true if we consider the geographical
distribution of quantum hardware, which requires very specific facilities to be
executed, usually not available in typical HPC infrastructures.

Moreover, considering the limited availability of quantum hardware, data
needs to be filtered, aggregated and pre-processed at different system layers, to
avoid wasting precious computational resources.

4.2 Security and Privacy

In CADD, privacy is a huge concern, since pharmaceutical companies are usually
not willing to share their intellectual property and lose a competitive advantage
on their competitors. As a consequence, different privacy-preserving and secure
schemes for drug design have been developed to allow pharmaceutical compa-
nies to collaborate on the same datasets and or computational clusters without
sharing private information [17].
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Moreover, execution on quantum nodes requires to (1) encode data coming
from different databases, (2) translate high level description of a quantum cir-
cuit for the target quantum machine, and (3) send both data and circuit over
the network to be executed on the quantum machine. Communication between
classic and quantum hardware could be exposed to privacy and security leaks,
which might have disastrous effects for the companies involved in CADD.

Considering the huge development of quantum drug design [7], and its impor-
tance for pharma industry [2], it is important to guarantee secure and privacy-
preserving multi-party interactions between classic and quantum hardware to
ensure large-scale adoption of quantum technology.

4.3 Classic/Quantum Integration

As mentioned in [21], simulations of molecular dynamics for CADD processes can
be executed on quantum computing, allowing either to speed up specific calcula-
tions or even to perform simulations that cannot be executed in classic systems.
Also, development of Quantum Machine Learning [6] offers new possibility to
ML-based drug discovery methods [9].

However, allowing such hybrid execution requires continuous communication
between classic and quantum hardware. To enable such communication, there is
a need of an intermediate layer capable to perform the translation between the
two types of architectures. Also, considering the high heterogeneity of quantum
hardware, each quantum task has to be allocated on the quantum node that
guarantees the best performance.

5 The Quantum Edge
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Fig. 3. The Quantum Edge.



140 V. De Maio and I. Brandic

We advocate the use of Edge computing to address challenges identified in
Sect. 4. Edge computing is a computing model that works by placing processing
logic in close proximity to data sources to reduce latency of their processing.
The use of Edge nodes allows mitigation of effects of geographic distribution of
quantum nodes. Also, it allows preprocessing and filtering of data at different
system layers, improving data processing efficiency. In this section, we expand
our concept of the Quantum Edge [12] and adapt it to CADD.

Our vision is summarized in Fig. 3. Since only very specific part of computa-
tion can be executed on quantum nodes, we employ a hybrid compiler, similar to
Qiskit and PennyLane. Hybrid compiler will generate both classic and quantum
part, which will be executed respectively in the classic and the quantum hard-
ware. During execution, Edge infrastructure will be responsible for (1) secure
and privacy-preserving encoding of streaming input data for the use on classic
and quantum part, (2) offload data processing on different classic and quan-
tum hardware, (3) collect data about execution on both classic and quantum
hardware to fine-tune execution of both quantum and classic part.

5.1 Efficient Data Encoding

Since quantum machines’ availability is limited in comparison to classical
machines, allocating fixed resources to data encoding/decoding might result in
underutilization of computational resources. Edge computing could be used not
only to enable low-latency filtering, aggregation and pre-processing of data, but
also to apply data encoding at lower layers of the network allowing their usage at
different systems’ layers. This model is particularly powerful for the processing of
streaming data coming from IoT devices, since it allows developers to not worry
about capacity planning, configuration and management of underlying infras-
tructure. Also, it increases the system elasticity, preventing under/over provision-
ing of classical infrastructure. Serverless paradigm could be applied to develop
data encoding/decoding methods required by different quantum algorithms at
the Edge. This choice will allow users to invoke required encoding/decoding
methods on-demand, reducing infrastructure overhead and processing latency
due to the use of Edge infrastructure.

5.2 Security and Privacy

The efficiency of Edge computing in executing data-intensive workflow compu-
tations has been proven by different works. For example, in [11], it is described
how executing data-intensive tasks at the Edge allows to significantly speed up
execution of scientific workflows. However, in a collaborative environment such
as the scenario described in Fig. 2, it is also important to guarantee privacy and
security, to protect intellectual property of different teams.

Edge is a natural solution in this context, due to the proximity of edge
devices to data sources, which ensures an additional level of data protection by
preventing user data to be moved to remote Cloud resources. This guarantees
the required level of confidentiality, i.e., the the act of preventing unauthorized
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entities from reading or accessing sensitive materials [20]. In [25], it is shown how
to apply privacy-preserving schemes to Quantum Federated Learning, which can
be improved by means of Edge AI.

5.3 Classic/Quantum Integration

Edge nodes could act as intermediate layers in this scenario, either extracting
ML-based models from performance data to identify the most suitable node or
by performing different data pre-processing and filtering to enable data exchange
between the different nodes.

In order to select the most suitable hardware for each quantum algorithm,
we need to be able to predict performance of different computations on different
quantum hardware. Considering the high variability of performance of quantum
hardware, as well as the lack of datasets available, it is important to enable
continuous collection of performance data of quantum and automatically tune
the model while new performance data arrive. One might use machine learning
(ML) on benchmarks suites such as [16] to train a performance model for quan-
tum machines. Data collected can be used by on-line methods, which work by
continuous improvement of a model using data coming from measurement, to
address the limited amount of data available on quantum execution.

6 Related Work

Computer Assisted Drug Design has a wide application in pharma industry,
as discussed in [2]. Most common methods in drug design are structure-based
drug design [3] and ligand-based drug design [21]. AI-based methods are instead
discussed in [18,19]. Applications of HPC to of drug design, molecular dynamics
are described in [15].

Research efforts in the integration of Non-Von Neumann architectures in
HPC systems are summarised in works such as [12,24], without considering drug
design. Application of quantum computing to scientific applications are discussed
in different works, such as [10] in the context of molecular dynamics simulations,
[6] in the context of quantum machine learning , showing opportunities and
limitation of applying quantum machine learning techniques to different prob-
lems, and [25] for federated learning, which is of particular interest for the Edge
computing domain. Quantum Drug Design has been extensively discussed by [7],
where different technological challenges of the NISQ hardware are described, but
challenges related to hybrid classic/quantum systems and integration of classic
and quantum hardware are not considered. Different applications of Variational
Quantum Algorithms are described in [8], without considering HPC and drug
design. Application of quantum computing to structure-based drug design are
discussed by [4], while applications of quantum to ligand-based drug design are
described in [13], without considering interactions with HPC systems.
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7 Conclusion and Future Work

In this work, we lay the foundations for our concept of the Quantum Edge.
First, we describe the challenges of executing scientific applications on hybrid
classic/quantum systems, focusing on a CADD use case. Based on the specific
challenges identified in the analysis, we describe how Edge computing could be
applied to address identified challenges. In the future, we plan to investigate
similar challenges in different scientific applications.
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