
Data-centric Edge-AI: A Symbolic Representation
Use Case

Shashikant Ilager1, Vincenzo De Maio1, Ivan Lujic2, and Ivona Brandic1
1Vienna University of Technology (TU Wien), Austria

{shashikant.ilager, vincenzo.maio, ivona.brandic}@tuwien.ac.at
2 Ericsson Nikola Tesla, Croatia

ivan.lujic@ericsson.com

Abstract—Today’s machine learning pipelines are primarily
executed in the cloud, from data storage to data processing, model
training, and deployment. However, machine learning is moving
to edge devices, creating the demand for AI applications at the
edge, known as Edge-AI. Traditional data management practices
applied in the cloud are proving to be inefficient for Edge-AI, due
to resource and energy constraints of edge devices and real-time
requirements of applications. This paper identifies the challenges
associated with data processing for Edge-AI. We then discuss
methods for efficient data processing at the edge, leading to data-
centric Edge-AI. As a use case scenario, we discuss the symbolic
representation of time series data and explain how it could help
save the cost of data storage and processing in developing Edge-
AI applications.

Index Terms—Edge-AI, Data-centric Edge, IoT data, Symbolic
representation of data, Big data

I. INTRODUCTION

The Internet of Things (IoT) enables different types of
physical devices to embed with sensors and actuators and
exchange data with smart systems over the Internet. The
rapid growth in IoT system deployments produces a huge
amount of data, known as Big Data. Traditionally, IoT data is
transmitted and stored in a centralized cloud to derive insights
and develop smart applications. However, this cloud-centric
IoT has become infeasible for time-critical applications for
multiple reasons [8], [13], [42]. First, modern applications
require a sub-millisecond response to their requests, and the
cloud-centric model fails to provide a faster response due
to their high network latency. Second, it is expensive to
transfer IoT data to remote cloud [35] as it consumes critical
bandwidth of the backbone network and creates network
congestion [9], [10]. Consequently, edge computing promises
to solve these issues by delivering computing, storage, and
network resources across cloud boundaries [7], at the network
edge. This paradigm shift is powering the development of real-
time machine-learning-based applications, known as Edge-
AI [13], [15].

Edge-AI enables extracting information from IoT data
streams using various techniques such as machine learning,
artificial intelligence, and visualization. Edge-AI provides so-
lutions such as anomaly detection, prediction, optimization,
and decision-making, which would enable the development
of real-time smart systems [36] with several benefits, such as
(1) Edge-AI enables data security and privacy since user data

do not need to be transferred to a geographically different
location or to different ownership; (2) machine learning mod-
els such as federated learning [45], and personalized models
[3] can be trained locally and collaboratively to preserve
data privacy; (3) Edge-AI facilitates (near) real-time analytics
and applications, such as autonomous vehicles, and AR/VR
systems, which demand faster data processing and response;
(4) Edge-AI can assist in reducing energy consumption since
it processes data locally, saving energy consumption of data
communication [40].

Cloud-native AI assumes an infinite amount of centralized
resources to store, process, train and deploy the ML mod-
els for run-time inference. Consequently, Edge-AI depends
on resources in the geographical vicinity, where the data
is generated and consumed, i.e., at the network edge. Due
to this hyper-distribution of resources and requirement of
cost-effectiveness, edge nodes are designed as much smaller
systems to only handle necessary processing tasks in the
proximity of IoT systems [33], [42]. The edge nodes can
contain all software components of an ordinary cloud data
center, but they are resource constrained. The edge nodes can
vary from embedded devices (e.g., gateways and everyday
smart objects with limited computing capabilities), stand-alone
devices (e.g., Raspberry Pis, cloudlet servers) to micro data
centers (e.g., co-located data centers and container data centers
[1]) according to the application requirements [17]. While
edge nodes can provide support for time-critical Edge-AI
applications, they cannot scale due to limited computational
power and storage capacity [8], [13].

Several efforts have been made to build efficient data pro-
cessing techniques at the edge, such as reducing network traffic
and improving data storage [27], adapting a-posteriori data
reduction of data streams [33], raw data compression [44], and
energy reduction measures using prediction-based schemes
[11]. However, there are many challenges that still exist for
efficient edge data processing and the development of machine
learning pipelines for Edge-AI. We require data-centric Edge-
AI approaches to (1) cope with the velocity and volume of
data generated, (2) support applications within the resource
constraints of edge, (3) efficiently utilize the edge devices [20],
[29], and (4) deliver high-quality services to end users with
minimal cost. Therefore, in this paper, we investigate edge
data-centric processing and identify its associated challenges.

IoT Sensor

IoT Factory

IoT Camera

IoT Car

IoT Home
Assitant

Wsg

Micro DC

Servers

Gateway

CloudletCloudlet

SoCs Edge Remote cloud

Core networkWireless/
Low bandwidth networks

Edge-AI
 applications

Data generation Data analysis

- Data cleaning
- Data preprocessing
- Data encoding

- Data archival
- Batch processing

Data storage

- Data standardizing
- Real time processing
- Model Training

•
•
•

•
•
•

•
•
•

Fig. 1. An overview of Edge-AI.

Afterward, we provide potential methods for efficient data
processing to support Edge-AI. Finally, as a use case, we
describe the symbolic representation of time series data to
reduce data size with minimal or no loss of accuracy, which
is suitable for Edge-AI applications.

The rest of the paper is organized as follows. Section II
provides background details, and Section III describes the
challenges of edge data processing. In Section IV, we discuss
the potential methods and future directions to develop better
data processing systems for Edge-AI. In Section V, we discuss
the symbolic representation use case. Section VI provides
related work, and finally, we derive conclusions in Section
VII.

II. BACKGROUND: DATA-CENTRIC EDGE-AI

Batch-processing has been the basis for designing and
building database environments for many years. This involves
extracting, transforming, loading, storing, and accessing data
for building ML models and developing analytic applications.
Batch processing suits the needs of many scientific and enter-
prise applications, where data is collected for a long time and
stored and processed centrally. However, the advent of IoT and
edge computing is enabling stream-processing, where the data
is produced and consumed in real-time by ML pipelines and
analytic applications. Many new database environments and
stream processing systems have been built recently, such as
Apache Kafka, Spark, and Flink [38], to handle the continuous
stream of data. However, stream processing frameworks are
still designed for centralized cloud environments and do not

fully address the challenges of managing the large volume of
streaming data at the edge.

The overview of typical Edge-AI applications supported by
edge computing is depicted in Fig. 1. IoT sensors are usually
implanted over System-on-Chip (SoCs) computing devices
that provide crucial computational resources. Still, SoCs have
limited computational capacities and energy budgets, therefore
are not suitable for data management. However, they sup-
port lightweight data processing tasks such as data cleaning,
preprocessing, and encoding. Also, they rely on higher-layer
resources such as edge and cloud for complex data processing
tasks. Edge computing provides resources at the network edge,
usually at a one-hop distance from the sensors, to enable a real-
time computing experience for user applications. They give
access to computational resources where data stream could be
consumed in real-time and complex analytical tasks could be
performed such as data standardization and model training.
The remote Cloud provides elastic and inexpensive resources
for non-critical tasks such as data archival and batch pro-
cessing, facilitating non-interactive applications. This multi-
tier computing model is creating a computing continuum from
the extreme edge (processing the data at the data source itself,
in our case, at SoCs in Fig. 1) to the remote cloud, enabling
truly distributed real-time computing where the data stream is
processed online on heterogeneous distributed resources.

The characteristics of hardware resources, cost, reliability,
and energy budget vastly differ among the resources across the
computing tiers. Consequently, the computing continuum is
creating completely different challenges for data management
that are unseen in the past. In the next section, we identify such

unique challenges associated with edge data management and
discuss them in detail.

III. CHALLENGES OF DATA-CENTRIC EDGE-AI
A. Data size

IoT sensors generate data in short periodic intervals, leading
to massive amounts of data generated within a short period
of time. It not only increases storage and processing cost
across the computing continuum but also puts tremendous
stress on the core backbone networks. While compression
could reduce the size of data considerably, computational
latency induced by compression and decompression tasks
affects real-time applications. Moreover, compression leads
to a loss of data accuracy, leading to inaccurate models in
Edge-AI. As identified in [5], 80% of energy at SoCs or
extreme edge resources are spent only on transferring the data
to the nearest processing server. Therefore, it is necessary
to develop data size reduction techniques that are suitable
for edge environments, requiring methods to deal with the
exponential growth of the data and assist Edge-AI applications
with minimal resource consumption.

B. Strict real-time requirements
Edge-AI applications support many real-time and near-real-

time critical applications. For real-time applications, response
times must be guaranteed within a specific deadline strictly.
On the other hand, in near real-time applications, a soft
deadline is expected for completing a data processing task.
For instance, a real-time traffic monitoring system might use
sensor data to detect high traffic volumes and update a map
to show congestion or detect blind spot objects in traffic
intersections to avoid potential accidents [29]. Similarly, a VR
gaming application expects near-real-time processing, and an
excessive latency will degrade the quality of experience of
users. Developing such systems needs to ingest, preprocess,
store, and analyze the data in real-time at high volumes.
While existing platforms support real-time requirements of
applications [2], [31], they still fail to provide the required
reliability and are resource inefficient.

C. Adaptive data processing for dynamic IoT/edge environ-
ment

IoT devices and sensors generate data in a distributed
heterogeneous environment, which leads to multiple issues,
such as (1) a high volume of data generated with irregular
velocity, (2) a change in the quality of data generated over
time, and (3) demand for highly flexible computing, storage
and network resources. In addition, Edge-AI applications are
continuously exposed to fluctuating workloads. Therefore, we
need to store and retrieve data from edge devices and sensors
in a way that meets the performance requirements of different
Edge-AI applications. Simple solutions like over-provisioning
resources for peak demand would greatly waste resources and
increase the cost of application service. On the other hand,
under-provisioning would affect the application requirements.
Therefore, we require scalable and cost-efficient methods to
meet the dynamic situations at the edge.

D. Incomplete and incorrect data

Machine learning pipelines require large amounts of data to
train a good-quality model. Data incompleteness is a natural
phenomenon in the IoT due to multiple factors, including (1)
temporary failure of sensor nodes, (2) network connectivity
issues, and (3) measurement errors. Traditionally, missing and
incorrect data is either completely removed or data imputation
techniques are used to fill in the missing data and correct the
data. Existing data imputation techniques depend on statistical
characteristics such as mean and median mode for missing
items [18] or pattern and correlation identification [22], [47].
Such data imputation techniques perform better when only
a small percentage of data is missing and are only feasible
for numerical time series data. However, modern IoT sensors
are generating not only time series data but also complex
data structures with categorical and multi-media data, which is
extremely difficult to recover or correct from simple statistical
tools. Moreover, we could expect a large volume of missing
data as the norm in edge data since IoT sensors are deployed
in unreliable environments [39]. Therefore, we require new
methods and techniques to handle missing and incorrect data
at the edge.

E. Energy

Energy is the main bottleneck across the computing contin-
uum for developing Edge-AI applications sustainably. First, at
the extreme edge, SoC sensor nodes spend a significant amount
of available energy on the communication subsystem [5].
Hence, reducing the required communication in resource-
constrained SoCs is essential for the efficacy of Edge-AI appli-
cations. Second, at the edge, the limited power budget is still a
big issue for efficient data processing [23], where edge devices
are often powered through a limited power supply (e.g., batter-
ies); therefore, energy efficiency is absolutely necessary at the
edge. On the other hand, cloud nodes usually have sufficient
energy available at their disposal. However, massive energy
consumption in the cloud leads to higher service costs and
negatively impacts the environment due to its CO2 footprint.
Thus, one single solution would not address all energy issues
that we have across the whole computing continuum. We
require new data processing methods and platforms that are
not only application-aware but also energy-aware in managing
data pipelines across computing-continuum.

Summary: Addressing the aforementioned challenges as-
sociated with edge data management impacts decision-making
through Edge-AI. Efficient data management in Edge-AI af-
fects crucial application and business domains, whether it
is related to energy efficiency, reducing traffic accidents or
improving air quality, and building Industry 4.0 applications,
among others. In the next section, we discuss the potential
future directions for edge data processing in relation to the
aforementioned challenges.

IV. FUTURE DIRECTIONS FOR DATA-CENTRIC EDGE-AI

A. Data size

Edge-AI requires intelligent data size reduction techniques
other than raw-data compression. In that regard, Symbolic
Representation (SR) of data could be potentially used for many
classes of ML applications without needing to reconstruct
the compressed data [2]. SR algorithms convert a time series
numerical IoT data into a reduced string with a specific length.
It makes an approximation of the input data by dividing the
time series into a certain number of segments in which data for
each segment can be represented by one specific value, i.e., the
average of its data points—the original length of the raw data
sequence to a reduced string, with a specific alphabet size. In
the context of an Edge-AI, this helps to reduce data dimension,
size, and network bandwidth usage, save edge storage, and
improve analytics features [19].

Nevertheless, many modern Edge-AI applications are built
upon diverse and complex types of IoT data, such as cate-
gorical and multi-media, with different data formats. In such
cases, it becomes important to develop application-specific
solutions to deal with data size. For example, decreasing frame
resolution in video results in negligible loss of model accuracy
[24]; moreover, we do not require high-resolution video frames
to train the accurate ML models. Thus, dynamic adaptation
of application-specific configurations will lead to a massive
reduction in data size.

B. Strict real-time requirements

Strict real-time data processing is an essential component
of Edge-AI due to time-sensitive requirements for decision-
making in emerging applications. Therefore, it needs com-
pletely new low-latency data processing methods. Latency
is mainly introduced by two components, i.e., computational
latency and network latency. Tackling computational latency
would require techniques such as smart placement of tasks
on edge nodes with accelerators or nodes with higher com-
puting power [43]. In a real setting, achieving this constraint
becomes challenging due to shared environments and dynamic
workloads. Similarly, MLOps such as model quantization and
neural network pruning [46] become extremely important at
the edge to reduce the computational complexity of machine
learning models.

Network latency can be decreased by setting up hyper-
distributed edge resources closer to application access
points [9]. However, this may not always be feasible due to
the cost of infrastructure setup and the practical limitations
of geographical locations. In addition, many Edge-AI appli-
cations have to deal with user mobility and mobile access
points (e.g., autonomous vehicles, drones). Thus, resource
provisioning and scheduling approaches should be mobility-
aware to meet the network latency requirements. For such
scenarios, we envision that spare computing resources in
autonomous vehicles, IoT edge devices, and smart systems
could be dynamically leased in the near future, resulting
in ”data centers on wheels” paradigm [41], that enables

extreme-edge and dynamic mobile computing. However, to
realize such a computing paradigm, secure and cost-efficient
resource-sharing platforms are required. Unlike the cloud,
which has established interoperability standards and matured
virtualization technology for secure resource sharing, the edge
still requires the development of new standards, lightweight
virtualization techniques, and software stacks.

C. Adaptive data processing for dynamic IoT/Edge

Edge-AI applications are subject to constantly changing
workloads. Flexible data processing techniques should be de-
veloped, such as adaptive sensing [37] and approximate com-
puting [48]. Adaptive sensing needs to consider the require-
ments of applications and should only produce and process
new data only when required. For example, temperature sensor
readings do not drastically change most days. Instead of a fixed
sensing interval, adapting for a dynamic delayed interval based
on the change in actual data could lead to resource efficiency
without affecting applications [4], [30]. Similarly, approximate
computing in Edge-AI focuses on less precision computation
with much lower computational latency. For example, model
training and inference with 16-bit computation results in a
reduction of multiple magnitudes of computational latency
[46] with a little loss in accuracy.

D. Incomplete and incorrect Data

The problem of missing and incomplete data in Edge-AI can
be dealt through data-driven methods, going beyond current
statistical tools. Particularly, generative AI [32], [34] has been
proven to be a feasible method for data imputation [21], [25].
Moreover, federated generative models are able to impute
the missing data, learning from the data distribution from
other sensors in the network. In addition, generative methods
are also able to create new synthetic data sets required for
training the machine learning models [49]. At the same time,
generative AI has many applications in different areas ranging
from creating AI-generated art and a principal role in the
development of large language models, such as ChatGPT.
However, in general, generative AI suffers from the problem
of hallucinating [6], i.e., the generation of plausible outputs
which are factually incorrect or unrelated to the given context.
Consequently, using generative AI for incomplete or incorrect
IoT data might result in completely unseen data distribution
compared to real data, and models trained on such data could
fit into non-real settings. Therefore, methods to verify whether
newly constructed data reflects the actual environments or
measurements, avoiding inherent biases of AI models, is of
research interest to many.

E. Energy

We do require different energy efficiency measures in each
layer of the computing continuum. Since SoCs major energy
consumption factor is its communication module, we should
focus on developing intelligent data-transfer techniques be-
tween SoCs and edge. For instance, transferring data only
when a new measurement has a deviation from a recent past

measurement [5]. Alternatively, not transferring the actual
data, rather employing predictive models at the edge to esti-
mate the sensor data, and only transfer locally trained models
to the edge in a periodic manner or when model drift happens
with certain thresholds [14]. In addition to energy-aware
approaches in managing continuum resources using traditional
methods such as energy-aware scheduling and task placements
[20], we require different workload distribution strategies in
Edge-AI. Since Edge-AI application components are deployed
on distributed infrastructure, workload distribution techniques
such as split computing [50] shall be leveraged, where neural
networks are dynamically partitioned and deployed across a
computing continuum based on the energy budget and latency
requirements.

F. Emerging hardware architectures, software paradigms, and
future application requirements

While data processing systems should support new data
flows and techniques, they should also consider the require-
ments of the future new Edge-AI applications. There is a
paradigm shift in software engineering, where monolithic soft-
ware applications are decomposed into micro-service-based
applications due to their flexibility in developing and maintain-
ing software applications. The application software systems
have quickly adapted to this new paradigm, data processing
systems are still heavily dependent on traditional monolithic
architectures (e.g., Hadoop, Spark), which are resource hungry
and fail to match the requirements of Edge-AI. In addition,
future Edge-AI applications would spend the majority of their
computational cycles on ML model training and inference
where different specialized accelerators are necessary [20].
Currently, most edge accelerators (e.g., NVIDIA Jetson Nano,
Google Coral device) are designed for inference and many
powerful accelerators in the cloud are used for training large
ML models. Thus, we require hardware-software co-design
to for benefiting from heterogeneous resources across the
computing continuum without too many manual configurations
and system tuning.

V. USE CASE: SYMBOLIC REPRESENTATION OF IOT DATA
AT EDGE

The development of IoT-assisted smart applications such
as smart wearables, which monitor and track vital signs of
patients, or smart meters, that balance energy demand and
supply in smart grids, generate a large amount of time-
series data. Such time-series data are usually transferred to
nearby processing devices (e.g., an edge node) to be analyzed.
This data transfer can create congestion and consume crucial
network bandwidth resources, decreasing the quality of service
(QoS) for latency-sensitive smart applications. Moreover, raw
data storage on the edge is expensive and infeasible due
to limited storage capacity. Consequently, reducing the data
size at the source and reconstructing it at the remote edge
node (when required) could reduce the network and storage
cost. Symbolic Representation (SR) techniques are promising

methods for reducing time-series data size while maintaining
the semantics of the data [26].

Unlike common raw data compression methods, the symbol-
ically converted data can still be used to directly perform data
mining tasks such as pattern matching, substring search, motif
discovery, and time series prediction, which are commonly
used techniques in IoT applications [16]. Nevertheless, if
required, it is still possible to reconstruct the original data
at run time with minimal reconstruction error.

Symbolic representation of data: A SR algorithm trans-
forms time series data into a string using finite alphabet
size, representing a time series of length n into the string
with arbitrary length k (<< n). Let us consider a time
series T = [t0, t1, ..., tN] ∈ RN+1 converted into a symbolic
representation S = [s1, s2, ..., sn] ∈ An, where each sj is an
element of an alphabet A = a1, a2, ..., ak of k symbols [16].
The sequence S should be of considerably lower dimension
than the original time series T , that is n << N , and it
should only use a small number of meaningful symbols, that
is k << n. This intermediate representation must also allow
an approximate reconstruction of the original time series, with
(1) a minimal and controllable error and (2) the shape of the
reconstruction suitably close to the original time series data.

Adaptive Brownian Bridge-based Aggregation (ABBA)
[16] is one of the SR algorithms that converts time series
data into symbols. A sample illustration of how time series
data is converted into symbolic representation is shown in
Fig. 2. Here, the black line on the left side figure represents
the original data, and the rightmost side shows symbolically
represented data. An SR process involves two parts, namely,
(1) the original data is split into segments, either adaptive
or user-defined interval numbers and (2) segments are
mapped to symbols. In the case of ABBA, segments are
found adaptively (left), and relatively similar segments are
clustered together (middle), and each cluster is mapped to a
symbol from the alphabet. A tolerance hyperparameter tol
sets boundaries for the allowed reconstruction error, where a
lower value results in a lower reconstruction error, but also a
lower compression rate with more symbols. In this example,
230 data points are converted to a word of just 7 symbols
(rightmost part of Fig. 2). A similar inverse approach will be
applied during the reconstruction of the data. However, many
challenges arise when using such algorithms in online and
resource-constrained edge environments, as described in the
next subsection.

A. Design requirements of symbolic representation of data at
edge

The state-of-the-art SR algorithms are designed for cen-
tralized batch processing systems and perform an offline
conversion. The existing SR algorithms have limited applica-
bility for edge environments because of the following design
requirements:

1) Online: Compression at the Edge should be continuous,
i.e., data should be compressed immediately after being

0 5 0 1 0 0 1 5 0 2 0 0
t im e p o in t

3

2

1

0

1

2

3

4

va
lu

e

1

2
3

4

5

6

7

orig in a l t im e s e rie s
p o lyg on a l ch a in a p p roxim a t ion

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0
le n g th

8

6

4

2

0

2

4

in
cr

em
en

t

1

2

3
4

5

6

7

a

b

c

p ie ce s
clu s te r ce n te rs

abbacab

Fig. 2. An illustration of symbolic representation using ABBA [16], [19]. (i) Creating linear pieces using a polygonal chain (left side); (ii) Clustering of
pieces (middle); (iii) Symbolizing (right side), i.e., abbacab.

Online Compression

Online Digitization

 Construction of
Linear Piece

Symbolic Conversion
- Receiver Side

Online
Normalization

 Compression
- Sender Side

Fig. 3. SymED Components

received since IoT data is produced continuously. Exist-
ing SR algorithms are designed to work with batch data,
assuming the entire dataset is available prior.

2) Adaptive: A SR algorithm should be adaptive (unlike
current methods that have fixed parameters such as win-
dow and alphabet size), allowing flexibility to configure
user-defined parameters, such as rate of compression
and error rate in reconstruction based on application and
resource constraints.

3) Distributed: A SR should be distributed in edge en-
vironments since data sources (IoT sensors) and data-
consuming nodes are different. The data source does not
have enough computational and network capabilities to
perform all the steps involved in SR and store the data
locally.

In the next subsection, we describe the adaptive SR method
suitable for the edge environment.

B. SymEd: Symbolic representation of data at Edge

We discuss our idea of leveraging symbolic representation
for data-centric Edge-AI. We discuss SymED 1, Symbolic
Edge Data representation method [19], i.e., an online, adap-
tive, and distributed approach for symbolic representation of
streaming data on edge. SymED is based on the Adaptive
Brownian Bridge-based Aggregation (ABBA) [16]. Here, we

1The presented use case idea is published in [19]; more details about it can
be found in the referred paper online.

assume low-powered IoT devices do initial data compression
(senders), and the more robust edge devices do the symbolic
conversion (receivers). The goal is to enable distributed sym-
bolic representation where raw data communication and stor-
age usage are limited in IoT-edge environments. Fig. 3 shows
the SymED components. A sender (IoT node) normalizes and
compresses all incoming data. A receiver (edge node) collects
transmitted data to construct linear pieces (line segments), con-
verts them to symbols in the digitization phase, and optionally
reconstructs pieces or symbols again. This method reduces the
number of transmitted bytes between IoT and edge devices
by efficiently distributing computational tasks of the symbolic
representation algorithm between the sender (IoT) and receiver
(edge devices). The detailed algorithmic steps of each SymED
component (Fig. 3), and its implementation is in [19].

The experiments conducted on 24 datasets from UCR time
series classification archive [12] demonstrate that SymEd can
significantly reduce the raw data size with minimal compu-
tational latency. In summary, SymED achieves on average
9.5% on compression rate and dimension reduction rate, with
a mean online reconstruction error of 13.25, while taking
a mean time of 42ms to compute a symbol. With a slight
overhead in compression performance and computational ef-
ficiency compared to offline ABBA, online SymED enables
real-time symbolic conversion while improving reconstruction
accuracy and adapting to the data stream distribution.

VI. RELATED WORK

The concept of edge computing and its role in IoT has
been discussed by [7], which introduces the main concepts
of edge/fog architectures and identifies the main challenges.
A first tentative in the standardization of edge computing
has been described by works such as [17]. Research efforts
related to edge data management focus mostly on storage
management [27] and in the recovery of time series data,
by means of forecasting methods [28] and imputation [22].
However, most of these works are focused on the analysis
of time series data and do not consider challenges related to
Edge-AI applications.

Edge-AI has been discussed in works such as [50]. Different
use cases for Edge-AI have been proposed in recent years,

such as vehicular traffic safety [29], and environmental moni-
toring [3]. Challenges of guaranteeing efficient data streaming
at the edge are discussed in works such as [38], [40].

In this work, we focus on identifying challenges and re-
search opportunities of data-intensive Edge-AI applications,
whose goal is to reduce data size while guaranteeing high
accuracy of Edge-AI models, and identify a use case for data
compression techniques, starting from our seminal work in
symbolic data representation at the edge [19].

VII. CONCLUSIONS

AI-based applications are becoming pervasive and moving
from centralized cloud deployments to the network edge,
leading to Edge-AI. Edge-AI applications have to deal with
a continuous stream of IoT data and support the latency
requirements of IoT applications. To efficiently utilize edge
resources and process streaming data, we require completely
new approaches, i.e., a data-centric view of how data, applica-
tions, and resources are managed, considering the capabilities
and limitations of edge environments. In this paper, we have
discussed the challenges associated with the data-centric Edge-
AI and identified the potential future directions describing
different methods and techniques that we can apply to solve the
identified challenges. As a use case, we presented the adaptive
symbolic representation of IoT data to reduce the streaming
data size and support in developing ML applications.

ACKNOWLEDGEMENTS

This work has been partially funded through the Rucon
project (Runtime Control in Multi Clouds), Austrian Science
Fund (FWF): Y904-N31 START-Programm 2015, by the
CHIST-ERA grant CHIST-ERA-19-CES-005, Austrian Sci-
ence Fund (FWF), Standalone Project Transprecise Edge Com-
puting (Triton), Austrian Science Fund (FWF): P 36870-N,
and by Flagship Project HPQC (High Performance Integrated
Quantum Computing) # 897481 Austrian Research Promotion
Agency (FFG).

REFERENCES

[1] What is a containerized data center: Pros and cons.
https://community.fs.com/blog/what-is-a-containerized-data-center-
pros-and-cons.html (2022), [Online; accessed 05-May-2023]

[2] Abbas, N., Asim, M., Tariq, N., Baker, T., Abbas, S.: A mechanism for
securing iot-enabled applications at the fog layer. Journal of Sensor and
Actuator Networks 8(1), 16 (2019)

[3] Ahmad, S., Aral, A.: Fedcd: Personalized federated learning via collab-
orative distillation. In: 2022 IEEE/ACM 15th International Conference
on Utility and Cloud Computing (UCC). pp. 189–194. IEEE (2022)

[4] Almeida, F., Assunção, M.D., Barbosa, J., Blanco, V., Brandic, I., Da
Costa, G., Dolz, M.F., Elster, A.C., Jarus, M., Karatza, H.D., Lefèvre,
L., Mavridis, I., Oleksiak, A., Orgerie, A.C., Pierson, J.M.: Energy
monitoring as an essential building block towards sustainable ultrascale
systems. Sustainable Computing: Informatics and Systems 17, 27–
42 (2018). https://doi.org/https://doi.org/10.1016/j.suscom.2017.10.013,
https://www.sciencedirect.com/science/article/pii/S2210537916301536

[5] Anastasi, G., Conti, M., Francesco, M.D., Passarella, A.: Energy con-
servation in wireless sensor networks: A survey. Ad Hoc Networks 7(3),
537–568 (May 2009). https://doi.org/10.1016/j.adhoc.2008.06.003

[6] Bang, Y., Cahyawijaya, S., Lee, N., Dai, W., Su, D., Wilie, B., Lovenia,
H., Ji, Z., Yu, T., Chung, W., Do, Q.V., Xu, Y., Fung, P.: A multitask,
multilingual, multimodal evaluation of chatgpt on reasoning, hallucina-
tion, and interactivity (2023)

[7] Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its
role in the internet of things. In: Proceedings of the first edition of the
MCC workshop on Mobile cloud computing. pp. 13–16. ACM (2012)

[8] Buyya, R., Srirama, S.N., Casale, G., Calheiros, R., Simmhan, Y.,
Varghese, B., Gelenbe, E., Javadi, B., Vaquero, L.M., Netto, M.A., et al.:
A manifesto for future generation cloud computing: Research directions
for the next decade. arXiv preprint arXiv:1711.09123 (2017)

[9] Charyyev, B., Arslan, E., Gunes, M.H.: Latency comparison of
cloud datacenters and edge servers. In: GLOBECOM 2020 -
2020 IEEE Global Communications Conference. pp. 1–6 (2020).
https://doi.org/10.1109/GLOBECOM42002.2020.9322406

[10] Chen, Y.K.: Challenges and opportunities of internet of things. In:
Design Automation Conference (ASP-DAC), 2012 17th Asia and South
Pacific. pp. 383–388. Citeseer (2012)

[11] Cui, E., Yang, D., Zhang, H., Gidlund, M.: Improving power stability
of energy harvesting devices with edge computing-assisted time fair
energy allocation. IEEE Transactions on Green Communications and
Networking 5(1), 540–551 (2020)

[12] Dau, H.A., Bagnall, A., Kamgar, K., Yeh, C.C.M., Zhu, Y., Gharghabi,
S., Ratanamahatana, C.A., Keogh, E.: The ucr time series archive.
IEEE/CAA Journal of Automatica Sinica 6(6), 1293–1305 (2019)

[13] Deng, S., Zhao, H., Fang, W., Yin, J., Dustdar, S., Zomaya, A.Y.:
Edge intelligence: The confluence of edge computing and artificial
intelligence. IEEE Internet of Things Journal 7(8), 7457–7469 (2020).
https://doi.org/10.1109/JIOT.2020.2984887

[14] Dias, G.M., Bellalta, B., Oechsner, S.: The impact of dual predic-
tion schemes on the reduction of the number of transmissions in
sensor networks. Computer Communications 112, 58–72 (Nov 2017).
https://doi.org/10.1016/j.comcom.2017.08.002

[15] Ding, A.Y., Peltonen, E., Meuser, T., Aral, A., Becker, C., Dustdar,
S., Hiessl, T., Kranzlmüller, D., Liyanage, M., Maghsudi, S., et al.:
Roadmap for edge ai: A dagstuhl perspective (2022)

[16] Elsworth, S., Güttel, S.: Abba: adaptive brownian bridge-based symbolic
aggregation of time series. Data Mining and Knowledge Discovery
34(4), 1175–1200 (2020)

[17] Group, O.C.A.W., et al.: Openfog reference architecture for fog com-
puting. OPFRA001 20817, 162 (2017)

[18] Hadeed, S.J., O’Rourke, M.K., Burgess, J.L., Harris, R.B., Canales,
R.A.: Imputation methods for addressing missing data in short-term
monitoring of air pollutants. Science of The Total Environment 730,
139140 (2020)

[19] Hofstätter, D., Ilager, S., Lujic, I., Brandic, I.: Symed: Adaptive and
online symbolic representation of data on the edge. In: Proceedings of
the 29th International European Conference on Parallel and Distributed
Computing (Europar). Springer (2023)

[20] Ilager, S., Muralidhar, R., Buyya, R.: Artificial intelligence (ai)-centric
management of resources in modern distributed computing systems.
CoRR abs/2006.05075 (2020), https://arxiv.org/abs/2006.05075

[21] Jiang, H., Wan, C., Yang, K., Ding, Y., Xue, S.: Continuous missing data
imputation with incomplete dataset by generative adversarial networks–
based unsupervised learning for long-term bridge health monitoring.
Structural Health Monitoring 21(3), 1093–1109 (2022)

[22] Junger, W., de Leon, A.P.: Imputation of missing data in time series for
air pollutants. Atmospheric Environment 102, 96–104 (2015)

[23] Khan, M.A., Algarni, F., Quasim, M.T.: Decentralised internet of things.
Decentralised Internet of Things: A Blockchain Perspective pp. 3–20
(2020)

[24] Khochare, A., Krishnan, A., Simmhan, Y.: A scalable platform for
distributed object tracking across a many-camera network. IEEE Trans-
actions on Parallel and Distributed Systems 32(6), 1479–1493 (2021).
https://doi.org/10.1109/TPDS.2021.3049450

[25] Kuppannagari, S.R., Fu, Y., Chueng, C.M., Prasanna, V.K.: Spatio-
temporal missing data imputation for smart power grids. In: Proceed-
ings of the Twelfth ACM International Conference on Future Energy
Systems. pp. 458–465 (2021)

[26] Lin, J., Keogh, E., Wei, L., Lonardi, S.: Experiencing sax: a novel
symbolic representation of time series. Data Mining and knowledge
discovery 15(2), 107–144 (2007)

[27] Lujic, I., De Maio, V., Brandic, I.: Efficient edge storage management
based on near real-time forecasts. In: 2017 IEEE 1st International
Conference on Fog and Edge Computing (ICFEC). pp. 21–30. IEEE
(2017)

[28] Lujic, I., De Maio, V., Brandic, I.: Adaptive recovery of incomplete
datasets for edge analytics. In: Fog and Edge Computing (ICFEC), 2018
IEEE 2nd International Conference on. pp. 1–10. IEEE (2018)

[29] Lujic, I., Maio, V.D., Pollhammer, K., Bodrozic, I., Lasic, J.,
Brandic, I.: Increasing traffic safety with real-time edge ana-
lytics and 5g. In: Proceedings of the 4th International Work-
shop on Edge Systems, Analytics and Networking. p. 19–24.
EdgeSys ’21, Association for Computing Machinery, New York, NY,
USA (2021). https://doi.org/10.1145/3434770.3459732, https://doi.org/
10.1145/3434770.3459732

[30] Mastelic, T., Brandic, I.: Data velocity scaling via dynamic monitoring
frequency on ultrascale infrastructures. In: 2015 IEEE 7th International
Conference on Cloud Computing Technology and Science (CloudCom).
pp. 422–425. IEEE (2015)

[31] Montella, R., Ruggieri, M., Kosta, S.: A fast, secure, reliable, and
resilient data transfer framework for pervasive iot applications. In:
Conference on Computer Communications Workshops. pp. 710–715.
IEEE (2018)

[32] Noy, S., Zhang, W.: Experimental evidence on the productivity effects
of generative artificial intelligence. Available at SSRN 4375283 (2023)

[33] Papageorgiou, A., Cheng, B., Kovacs, E.: Real-time data reduction at the
network edge of internet-of-things systems. In: 2015 11th International
Conference on Network and Service Management (CNSM). pp. 284–
291. IEEE (2015)

[34] Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., Chen, M.: Hierarchical
text-conditional image generation with clip latents (2022)

[35] Ranjan, R.: Streaming big data processing in datacenter clouds. IEEE
Cloud Computing 1(1), 78–83 (2014)

[36] Schulz, P., Matthe, M., Klessig, H., Simsek, M., Fettweis, G., Ansari, J.,
Ashraf, S.A., Almeroth, B., Voigt, J., Riedel, I., et al.: Latency critical
iot applications in 5g: Perspective on the design of radio interface and
network architecture. IEEE Communications Magazine 55(2), 70–78
(2017)

[37] Sekine, M., Ikada, S.: Adaptive cooperative distributed compressed
sensing for edge devices: a multiagent deep reinforcement learning ap-
proach. In: 2021 IEEE International Conference on Pervasive Computing
and Communications Workshops and other Affiliated Events (PerCom
Workshops). pp. 585–591. IEEE (2021)

[38] Shahverdi, E., Awad, A., Sakr, S.: Big stream processing systems: an
experimental evaluation. In: 2019 IEEE 35th International Conference
on Data Engineering Workshops (ICDEW). pp. 53–60. IEEE (2019)

[39] Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge computing: Vision and
challenges. IEEE internet of things journal 3(5), 637–646 (2016)

[40] Shi, Y., Yang, K., Jiang, T., Zhang, J., Letaief, K.B.: Communication-
efficient edge ai: Algorithms and systems. IEEE Communications Sur-
veys & Tutorials 22(4), 2167–2191 (2020)

[41] Sudhakar, S., Sze, V., Karaman, S.: Data centers on wheels: Emissions
from computing onboard autonomous vehicles. IEEE Micro 43(1), 29–
39 (2023). https://doi.org/10.1109/MM.2022.3219803

[42] Sun, X., Ansari, N.: Edgeiot: Mobile edge computing for the internet of
things. IEEE Communications Magazine 54(12), 22–29 (2016)

[43] Tuli, S., Ilager, S., Ramamohanarao, K., Buyya, R.: Dynamic
scheduling for stochastic edge-cloud computing environments
using a3c learning and residual recurrent neural networks. IEEE
Transactions on Mobile Computing 21(3), 940–954 (2022).
https://doi.org/10.1109/TMC.2020.3017079

[44] Wang, J.B., Zhang, J., Ding, C., Zhang, H., Lin, M., Wang, J.: Joint
optimization of transmission bandwidth allocation and data compression
for mobile-edge computing systems. IEEE Communications Letters
24(10), 2245–2249 (2020)

[45] Wang, S., Tuor, T., Salonidis, T., Leung, K.K., Makaya, C., He, T., Chan,
K.: Adaptive federated learning in resource constrained edge computing
systems. IEEE journal on selected areas in communications 37(6), 1205–
1221 (2019)

[46] Wang, T., Wang, K., Cai, H., Lin, J., Liu, Z., Wang, H., Lin, Y., Han,
S.: Apq: Joint search for network architecture, pruning and quantization
policy. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 2078–2087 (2020)

[47] Wellenzohn, K., Böhlen, M.H., Dignös, A., Gamper, J., Mitterer,
H.: Continuous imputation of missing values in streams of pattern-
determining time series. In: EDBT. pp. 330–341 (2017)

[48] Wen, Z., Quoc, D.L., Bhatotia, P., Chen, R., Lee, M.: Approxiot:
Approximate analytics for edge computing. In: 2018 IEEE 38th Inter-

national Conference on Distributed Computing Systems (ICDCS). pp.
411–421 (2018). https://doi.org/10.1109/ICDCS.2018.00048

[49] Zhang, C., Kuppannagari, S.R., Kannan, R., Prasanna, V.K.: Generative
adversarial network for synthetic time series data generation in smart
grids. In: 2018 IEEE International Conference on Communications, Con-
trol, and Computing Technologies for Smart Grids (SmartGridComm).
pp. 1–6 (2018). https://doi.org/10.1109/SmartGridComm.2018.8587464

[50] Zhao, Z., Barijough, K.M., Gerstlauer, A.: Deepthings: Dis-
tributed adaptive deep learning inference on resource-constrained
iot edge clusters. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 37(11), 2348–2359 (2018).
https://doi.org/10.1109/TCAD.2018.2858384

