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ABSTRACT
Despite advances in vehicle technology and road modernization,
traffic accidents are a huge global issue, causing deaths and injuries,
especially among pedestrians and cyclists. This often happens due
to pedestrians and cyclists in drivers’ blind spots or distractions
delaying drivers’ reactions. Therefore, timely warning drivers about
critical situations is important to increase traffic safety. New edge
computing and communication technologies have been proposed
to reduce latency in critical IoT systems. However, state-of-the-art
solutions either do not focus on traffic safety or do not consider
low-latency requirements in this context.

We propose InTraSafEd5G (Increasing Traffic Safety with Edge
and 5G) to address these issues. InTraSafEd5G performs real-time
edge analytics to detect critical situations and deliver early warn-
ings to drivers. After describing our design choices, we provide a
prototype implementation and evaluate its performance in a real-
world setup. The evaluation shows that InTraSafEd5G can (i) detect
critical situations in real-time and (ii) notify affected drivers in
108.73𝑚𝑠 on average using 5G, which is within expected latency
requirements of road safety IoT applications. Our solution shows
a promising step towards increasing overall traffic safety and sup-
porting decision-making in critical situations.

CCS CONCEPTS
•Computer systems organization→ Sensor networks; •Hard-
ware→ Sensor applications and deployments; • Information
systems → Data analytics.
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1 INTRODUCTION
Ensuring road traffic safety represents an important challenge [6].
According to [1], at least 51300 pedestrians and 19450 cyclists were
killed on EU roads between 2010 and 2018, accounting deaths among
pedestrians and cyclists for 29% of all EU road deaths, as reported by
the European Transport Safety Council (ETSC). Causes of accidents
involve distractions and poor visibility. Early warning systems can
improve traffic safety by promptly notifying drivers about critical
situations (e.g., pedestrians or cyclists in drivers’ blind spots [6]),
allowing them to take actions to avoid accidents [16]. However,
since drivers’ brake reaction time is measured around 1500ms on
average [7], early warning systems must detect and send timely
notifications respecting strict latency constraints.

Recently, edge computing has been proposed as a solution to
reduce latency in critical systems. However, several challenges
need to be addressed to allow drivers to receive notifications within
strict latency constraints. Challenges are related to (i) placement
of edge nodes respecting urbanistic space constraints; (ii) selection
of efficient detection algorithms to identify dangerous situations
within given constraints; (iii) selection of a network technology
allowing fast aggregation and delivery of information to drivers;
(iv) providing real-time notifications to multiple vehicle drivers
approaching the critical intersections.

Existing work in this regard targets vehicles with V2X com-
munication capabilities [14]. Other works either do not take into
account pedestrians’ safety [17] or do not consider strict latency
constraints [5]. Some modern vehicles provide pedestrian detection
feature and automated emergency braking (i.e., automatically ap-
plying the vehicles’ brakes to assist drivers in preventing a crash).
However, modern vehicles with advanced technologies can be more
expensive and inaccessible to most road users.

We propose InTraSafEd5G (Increasing Traffic Safety with Edge
and 5G), a system for detecting pedestrians and cyclists in drivers’
blind spots at critical traffic intersections and reporting their pres-
ence to drivers. Detection of pedestrians is performed by applying
an object detection algorithm on video frames streamed from cam-
eras that are attached to edge devices, and integrated on traffic lights.
Detection results are delivered in real-time using low-latency 5G
communication. InTraSafEd5G is designed to provide audio and vi-
sual notifications on the drivers’ mobile phones, thereby providing
early warnings about critical situations in the driver’s path.

First, we present the conceptual design of InTraSafEd5G and mo-
tivate our design choices in Section 2. Then, we provide a prototype
implementation of InTraSafEd5G and deploy it on a critical inter-
section in the city of Vienna, as described in Section 3. We evaluate
InTraSafEd5G performance in Section 4, showing its capability to
detect critical situations and deliver early warnings in the order of
tens to hundreds of milliseconds [13]. Finally, we describe related
work in Section 5 and conclude our paper in Section 6.

2 BACKGROUND
2.1 Motivational Scenario
In the last 10 years, the city of Vienna has experienced around 50000
casualties from traffic accidents, resulting in more than 100 deaths 1.
Many casualties are caused due to blind spots in the drivers’ sight
or distractions while driving, causing inabilities to brake on time.
Figure 1 illustrates our motivational scenario. We consider a typical
1https://www.wien.gv.at/english/administration/statistics/traffic-accidents.html



example of a crosswalk situation on the intersections, in which
both drivers and users (e.g., pedestrians, cyclists) can not detect po-
tentially threatening situations on time. Such situations can include
roadside obstacles and conditions that can reduce traffic safety such
as (i) roadside bus stations and buses covering cyclists approaching
the intersection, (ii) bushes and trees hiding children and animals
that are moving towards the crosswalk (e.g., a child running after a
dog, out of parents’ sight), (iii) bad weather conditions causing poor
visibility (e.g., fog, heavy rain). Also, pedestrian-vehicle conflicts
can often happen due to unexpected behaviors of pedestrians near
crosswalks, such as sudden acceleration and deceleration [2].

To increase traffic safety and support drivers and users on critical
intersections to avoid accidents, we consider (i) exploiting modern
AI and computer vision techniques to detect critical situations
and, (ii) exploring possibilities of edge computing paradigm and
emerging 5G network connection. We design our traffic safety
solution in the scope of InTraSafEd5G project, funded by the city
of Vienna to explore 5G use cases for a better connected smart city.

2.2 Requirements
We identified a specific intersection in the city of Vienna that is
considered as critical for traffic accidents, due to roadside obstacles
and blind spots. Swarco Futurit, a Vienna traffic infrastructure
provider, enabled access to empty traffic lights chambers, in which
the corresponding edge hardware is installed. We consider the
following properties and requirements in the InTraSafEd5G design:

• Low latency: Low latency is an important requirement to
increase traffic safety, since delivering timely notifications to
drivers is important to avoid accidents. Total latency is given
by the sum of (i) computation time, (ii) communication (data
transfer or message) overhead, (iii) reliability overhead. The
sum of these values must respect the drivers’ average brake
reaction time [7], therefore notification latency must be rang-
ing in the order of tens to hundreds of milliseconds [13].

• Privacy preservation: Many edge sensors and devices can
collect sensitive data about people (e.g., people’s faces). In
this context, any network transfer of sensitive data should be
minimized or anonymized (e.g., through aggregation, num-
bers). Compared to traditional scenarios of sending sensitive
data over the network to the cloud, we should ensure that
no sensitive data are stored or sent over the network [4].

• Space limitations: Edge-relevant hardware must be deployed
close to critical intersections, respecting urbanistic space
constraints. In our setup, the city of Vienna infrastructure
provider provided access to empty traffic light chambers for
the deployment of edge hardware. Provided traffic lights
chambers can be found in most of the traffic infrastructures
worldwide [15].

• Low cost: Edge hardware (e.g., AI device, camera) has to be
installed on many crossroads of a metropolitan area. For
this reason, hardware costs must be contained. In our use
case, the traffic infrastructure provider of the city of Vienna
estimated the costs for a single edge node installation to be
in the range of a few hundreds of euros.

Figure 1: An example traffic scenario to illustrate the critical
situations when pedestrians and cyclists appear in the dri-
ver’s blind spots (e.g., behind roadside bus station, bushes).

3 SYSTEM DESIGN
Figure 2 shows an overview of the proposed architecture design,
based on the challenges and requirements identified in Section 2.
We illustrate two main components:

Computation component is responsible for the real-time pro-
cessing of data coming from edge sensing devices. It includes both
hardware and software parts. The hardware part includes adapted
configurations of edge devices, considering space requirements,
and plugged cameras to constantly monitor critical intersections
and crosswalks. The software part includes edge processing, which
processes video frames using deep learning object detection mod-
ules. Object detection workflows are based on a neural network,
trained to detect pedestrians and cyclists.

Communication component is responsible for real-time deliv-
ery of the edge processing output that is critical for early warnings
of drivers. It includes both network and application parts. The net-
work part includes a mechanism to efficiently and timely broadcast
such information to a multiple and dynamic number of vehicle
drivers approaching the intersection. The application part includes
implemented modules for tracking the vehicle movements as well
as the application interface with warning features.

In Step 1, vulnerable road users (e.g., pedestrians and cyclists)
are captured in video frames collected by a deployed traffic camera.
Input video frames are constantly analyzed by the edge processing
module in Step 2, searching for target users in the critical crosswalk
or intersection area. Once users approaching this monitored area
are detected (Step 3), a notification message is generated in Step 4.
The message is then forwarded to an app installed on the driver’s
mobile device, which shows visual and audio notification (Step 5).

Regarding the privacy property, the video frames, captured by
cameras, are analyzed immediately at the edge device, ensuring that
sensitive data are neither transferred nor stored over the network.
Only analytics output, i.e., a number of objects detected (i.e., pedes-
trians, cyclists, or animals), is transmitted to drivers’ mobile devices.
Technology evaluation is described in the following sections.

2



Figure 2: Architecture overview.

3.1 Computation Component
3.1.1 Hardware. Object detection performance depends on se-
lected hardware. Due to physical space limitations of the traffic light
chamber, we employ single-board Raspberry Pi (RPi) edge devices,
to which we attach co-processors to improve performance of neural
network inference. As co-processors, we evaluate Google’s Coral
Edge TPU accelerator, and Intel’s Neural Compute Stick 2 (NCS2)
since both can be plugged via USB and used for vision-based ML ap-
plications. We select Coral Edge TPU, since it supports TensorFlow
Lite models (lightweight solution to run ML TensorFlow models
on edge devices). Considering space and low-latency requirements,
we evaluate different RPi models with/without Coral’s Edge TPU.
Table 1 shows technical details. To capture video frames from the
target intersection, we use RPi 8MP Camera Module V2.

3.1.2 Software. Software module is developed using TensorFlow
Lite, a version of popular TensorFlow framework optimized for
limited IoT devices, including RPi. To select the best performing
edge configuration, we first collected video frames from the chosen
intersection, on which the prototype should be deployed. Then, we
evaluated the performance of both quantized MobileNet SSD v1
and v2, lightweight and pre-trained convolutional neural network
(CNN) based object detection models, trained using the standard
COCO [10] dataset, on our collected dataset. Figure 3 shows the
average inference time per single frame on different edge node con-
figurations. The results are averaged over 100 frames for statistical
significance, since by adding more frames the difference in standard
deviation of inference times is below 39 𝜇𝑠 on average. We observe
in Table 1 that RPi 4 with Edge TPU has overall the lowest inference
time for both models.

Furthermore, we check confidence scores of the model, calcu-
lated using Tensorflow confidence function2, for both models in
Figure 4. We consider quantized model versions, to further improve
latency with limited effect on inference score. Here, the object de-
tection module is set to only detect a class "person" from a collected
dataset with a confidence threshold of 0.5 (i.e., a cut-off threshold
for accepting detection results). Although MobileNet SSD v1 has a

2https://www.tensorflow.org/lite/models/object_detection/overview

Table 1: Edge node configurations.

Node
type CPU RAM

[GB]
Edge
TPU

RPi 3 B+ Quad-core Cortex-A53 (ARMv7) at 1.4GHz 1 no
RPi 3 B+ Quad-core Cortex-A53 (ARMv7) at 1.4GHz 1 yes
RPi 4 Quad-core Cortex-A72 (ARMv7) at 1.5GHz 4 no
RPi 4 Quad-core Cortex-A72 (ARMv7) at 1.5GHz 4 yes

slightly lower inference time by 2.46ms (or 13.84%) on average, Mo-
bileNet SSD v2 shows a better inference score of 16.12% on average.
Thus, we select as the best option MobileNet SSD v2 running on
RPi 4 with Edge TPU.

3.2 Communication Component
InTraSafEd5G is designed to work in the mobile context, thus we
consider 3G, 4G and 5G physical and transport layers. We describe
now all design choices related to the communication component.

3.2.1 Network Protocol. Since the main goal of InTraSafEd5G is
to provide notifications of critical situations within specific time
frames, selected communication protocol should (i) have a minimal
message overhead to keep the transfer time and latency low, (ii)
offer guaranteed delivery of messages to users, and (iii) avoid unnec-
essary network flooding. Traditional client-server communication
(e.g., HTTP in cloud-based web applications), is not suited for this
scenario, due to high message overhead and the necessity of polling
to be notified about new events (e.g., a pedestrian detected in a
blind spot). We focus then on publish/subscribe (Pub/Sub) protocols,
which allow event-based notification and dynamical targeting of
drivers close to a particular crossroad.

We select the following protocols for evaluation, used in differ-
ent contexts requiring near real-time latency: CoAP, DDS, AMQP,
MQTT. In Table 2 we show the result of our comparative study.
First, we focus on Pub/Sub protocols, to enable event-triggered data
transmission and avoid unnecessary polling. Also, since accurate
detection of pedestrians and cyclists in our scenario needs to aggre-
gate sensor data in a single processing point, a protocol designed for
centralized processing is more desirable than a distributed protocol.
Another desirable feature is the possibility to choose between dif-
ferent Quality of Service (QoS) levels according to provided latency.

Figure 3: Inference time observation for different edge node
configurations and two object detection models.
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Figure 4: Confidence score observation for two object detec-
tion models on RPi 4 with Edge TPU (threshold set to 0.5).

A good level of security should also be provided, since no malicious
users should be able to inject fake detection data and potentially
causing troubles. Finally, we want to ensure that header size of each
message is low, to reduce network load.

Based on our analysis, we do not select CoAP and AMQP since
they do not offer a publish/subscribe communication model. Be-
tween publish/subscribe protocols (DDS and MQTT) we select
MQTT, due to its lower overhead and the fact that it is most suited
for centralized processing.

3.2.2 Quality of Service. Besides strict low-latency of delivery, In-
TraSafEd communication layer has also to provide guarantees on
delivery of the notification. Indeed, potential effects of unreliable
communication might cause the loss of important updates, with
negative effects on traffic safety. Since our communication layer is
based on the MQTT protocol, we focus on MQTT QoS layers.

MQTT offers three different QoS levels: QoS 0, where messages
are delivered AT MOST ONCE (no guarantee on message delivery);
QoS 1, where messages are delivered AT LEAST ONCE (message
delivery is guaranteed, but replications might occur), and QoS 2,
where messages are delivered EXACTLY ONCE. Since selected QoS
affects latency of notifications, we measure the latency of MQTT
messages in our scenario using different QoS levels.

Latencymeasurements are performed employing a self-developed
Android mobile app, which first subscribes to a specific topic, then
it sends a message with a unique id using the same topic. Once it
receives the same messages, it calculates the latency based on the
round-trip time of the message. The payload of the message is set
to 64 bytes that is realistic for the amount of data managed by the
application (the number of pedestrians and cyclists in a blind spot).

Table 2: Comparative study of IoT protocols. Pub/Sub = Pub-
lish/Subscribe; R/R = Request/Reply; P2P = Point to Point.

Protocol Paradigm Processing QoS
levels Security Header

size [bytes]
CoAP R/R Distributed 4 DTLS 4
DDS Pub/Sub Distributed 5 TLS 48
AMQP P2P Impl. specific 3 TLS 8
MQTT Pub/Sub Centralized 3 TLS/SSL 2

Figure 5: MQTT network latency for QoS={0, 1, 2} over differ-
ent network types (3G, 4G and 5G).

Figure 5 shows network latency offered by different QoS levels
on different network layers (3G, 4G and 5G). Results are obtained
by calculating the average latency of 100 messages, for statistical
significance. From the plot, we see that in most of the cases average
notification latency falls within the requirements of tens to hun-
dreds of milliseconds for road safety applications [13]. However,
when selecting QoS 2, the 95% confidence interval of our measure-
ments for 3G includes values above 1000ms. For this reason, we
select QoS 1, which ensures latency below 800ms in the worst case
(3G, QoS 1). Also, in our scenario, average notification latency is
109.35ms and 90.95ms, respectively for 4G and 5G.

3.2.3 Protocol Setup. Finally, we describe the general MQTT pro-
tocol setup. MQTTmessage routing relies on a software component
called MQTT broker, which receives messages published by dif-
ferent clients (publishers) and forwards them to clients subscribed
to the messages’ topic (subscribers). In the target scenario, each
camera with RPi represents a publisher, and a mobile app is a sub-
scriber. In the current prototype, topic subscriptions are set up
when the application is started. In future work, we plan to inves-
tigate location-based subscriptions, as described by [8]. We select
Mosquitto MQTT broker [9], which offers enough security and
flexibility for our requirements.

Each client needs access to the broker over the Internet. Since
latency is the main requirement of our application, we evaluate the
latency of deploying the broker at the edge (inside TU Wien’s in-
frastructure) or using a cloud service instead. Evaluation of latency
of both deployments is shown in Figure 6. We can see that edge
deployment significantly reduces the latency (up to 50.20% and
47.18% for 4G and 5G, respectively), making edge broker placement
as the best choice for our latency-critical scenario.

3.3 Mobile Client
Notifications of critical situations are sent to a mobile client in-
stalled on the driver’s mobile phone. InTraSafEd5G mobile client is
developed for Android 10 using Kotlin. We leave implementation of
iOS and Windows Phone versions for future work. The application
works as follows: first, the app subscribes to the topic representing
a monitored critical area and registers to the broker. Once the mes-
sage is received, the app visualizes a message using overlays and
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Figure 6: MQTT network latency for QoS=1w.r.t. edge/cloud
broker placement.

playing an audio notification. Communication with the MQTT bro-
ker is performed through the PAHO MQTT library 1.1 for Android,
while the location is obtained using the mobile phone’s GPS and
Google Maps SDK v3.1.0. An example of the mobile client interface
is shown in Figure 8b.

4 SYSTEM DEPLOYMENT
4.1 Design Choices
InTraSafEd5G collects video frames from cameras deployed on
smart traffic lights, targeting drivers’ blind spots. Video frames
are then processed by an object detection algorithm, implemented
using Python 3.7, to identify critical situations (e.g., pedestrians
and cyclists outside drivers’ field of vision). To this end, we (i)
deployed edge nodes using RPi 4B, to which we attached a camera
and Edge TPU to speed up object detection (Figure 7a) and (ii) set up
a network connection using a HTC 5G Hub (5G network coverage
is set exclusively for the prototype deployment). We placed the edge
node (above) and 5G Hub (under) specific traffic lights (Figure 7b).
Figure 8a illustrates the detection of pedestrians in drivers’ blind
spots (e.g., behind bushes or bus stations) by installed edge nodes.
Results from different edge nodes are then aggregated and audio
and visual notifications are sent to the driver’s mobile device if a
critical situation is detected while a driver approaches the covered
intersection (Figure 8b).

4.2 Discussion
Transmission latency on 5G is measured to be around 90.95ms
for QoS 1, which guarantees enough time for timely notifications.
Regarding the computational performance on the edge device, ob-
ject detection on camera-collected frames takes around 17.78ms
using a lightweight RPi 4 with Edge TPU. This solution not only
reduces cost while providing high-level performance, but also al-
lows increased privacy, as data taken by cameras do not travel
over the network nor need to be stored on the devices. Overall, in
our InTraSafEd5G use case, detection of pedestrians on the cross-
road together with the required latency to notify drivers results in
108.73ms on average. We also observed that the proposed system
with QoS level 0 results in overall latency of 32.26ms on average
for 5G. However, although this QoS level does not guarantee the

(a) Edge node deployment. (b) Smart traffic light integration.

Figure 7: Edge nodes setup on Vienna’s chosen intersection
and the integration into the traffic-signal chambers.

(a) Pedestrian detection. (b) Screenshot of user application.

Figure 8: Real-time edge analytics demonstration for in-
creasing traffic safety. Subfigure (a) shows the output of ob-
ject detection (during the project demonstration day) on
edge node Raspberry Pi 4B, while Subfigure (b) shows the
application running on the driver’s Samsung S20 5G phone.

delivery of notifications, it is appropriate in situations where (i) the
connection is reliable (e.g., cellular antennas deployed close to the
target area), and (ii) message loss on a small scale would not affect
the early warning system (e.g., capturing and processing higher
frame rates). Still, in future work we plan to investigate the scale
of message loss using QoS level 0.

The installation of the proposed solution on a higher scale of a
metropolitan area, would require (i) identification of critical inter-
sections, (ii) installation of 5G network coverage, (iii) integration of
the proposed design choices, and (iv) owning a 5G-enabled phone.
Although using 5G connection can offer the full benefits of the
proposed solution, (i) owning a 5G-enabled phone can be costly for
users, as well as (ii) installing 5G coverage in all areas. However,
as we showed, the proposed solution is designed to work also with
common 3G/4G enabled phones and network types, (e.g., 3G and
4G only available in rural areas of the city), still within acceptable
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total latency of 760.94ms (3G) and 127.13ms (4G) on average for
QoS 1. Furthermore, the cost of edge hardware integration should
be in the range of € 200 on average for edge configuration such as
RPi 4B, 8MP Camera Module V2 and Edge TPU.

5 RELATEDWORK
The work [5] addressed multi-object tracking in urban settings
using a network of edge devices. However, the discussed use case
only considered privacy, accuracy and performance. In [11], the
authors propose EdgeEye, a service enabling the development and
execution of video analytics applications. EdgeBox [12] is an ar-
chitecture for improving automatic event detection in edge near
real-time video analytics. Authors in [3] discussed video image
processing algorithms for real-time tracking and counting vehicles
using edge devices. However, these works either do not consider
strict low-latency requirements, or have analytics placement using
cloud, or target different problems than traffic safety.

Vehicular networks and Vehicle-To-Everything (V2X) communi-
cation capabilities based on 5G are investigated in [14]. It introduces
a novel system design, targeting Vehicles and roadside infrastruc-
ture with V2X capabilities. To increase traffic safety, the concept
of [17] looked at the problem from a perspective of intelligent driv-
ing vehicles and real-time lane-change recognition. We focus on
real-time edge analytics and high transmission mobile networks in
detecting critical situations of pedestrians and cyclists appearing
in drivers’ blind spots on intersections.

6 CONCLUSIONS AND FUTUREWORK
We show the potential of edge computing and 5G to increase traffic
safety.We target critical situations on intersections, e.g., pedestrians
and cyclists appearing in drivers’ blind spots. After analyzing design
choices, we developed and evaluated a real-time edge analytics
prototype. In the real-world setup, critical situations are detected
and timely forwarded to mobile devices of drivers approaching the
intersection. The proposed system enables real-time (i) detection of
critical situations by running object detection on lightweight edge
nodes; (ii) delivery of resulted critical information to vehicle drivers
in 108.73ms on average with 5G. Further, InTraSafEd5G is designed
to preserve privacy and guarantee low latency with other network
types, representing a promising step for future edge applications
and advances of communication technologies to support real-time
decision-making.

The main limitations of this work are (i) the driver’s app auto-
matically subscribes to topics of certain intersections and (ii) the
real-time notifications start showing when drivers’ distance is 100m
from the critical intersection. In future work, we plan to investigate
location-based subscriptions [8] and the effect of distance and warn-
ing timings on drivers’ brake reaction time, as in [16]. Furthermore,
we plan to improve the resilience of critical edge processing to net-
work/node failures (e.g., investigating container-based approaches
for edge analytics).
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