
Probabilistically Reliable and Efficient Edge Offloading
Josip Zilic

Vienna University of Technology

Vienna, Austria

josip.zilic@tuwien.ac.at

Atakan Aral

Vienna University of Technology

Vienna, Austria

atakan.aral@tuwien.ac.at

Ivona Brandic

Vienna University of Technology

Vienna, Austria

ivona.brandic@tuwien.ac.at

ABSTRACT
Edge offloading as a concept offloads mobile applications on remote

Edge and Cloud servers to reduce application response time and bat-

tery consumption on the mobile device. However, Edge Computing

as infrastructure is still not standardized, which implies that Edge

devices are diverse in resource and availability characteristics. This

impacts the Edge offloading control which has to consider a wide

range of offloading sites to offload parts of the mobile application.

Moreover, during offloading, failures that exhibit stochastic behav-

ior can disrupt the process and result in unexpected costs. Most

of the literature is focused on system performance optimization

without considering the offloading failure impact on the system.

The offloading performance optimization should be combined with

the system reliability objective by predicting failures based on the

historical data and manage offloading decision-making accordingly.

Thus, we employ the Edge offloading framework that features both

Markov Decision Process (MDP), that accounts for both the nonde-

terminism and the stochastic behavior of the Edge offloading, and

the Support Vector Regression (SVR) algorithm with its prediction

capabilities that are proved in the reliability engineering literature

to yield promising results. The solution is verified via a simulation

environment by using a real-world failure dataset from Los Alamos

National Laboratory (LANL) and various types of mobile applica-

tions as Directed Acyclic Graphs (DAG). DAGs are sampled based

on LiveLab application usage traces. Evaluation results show that

our proposed solution can improve response time up to 48%, energy

efficiency up to 41%, and reduce failure rates by 96%. compared

to state-of-the-art offloading decision engines. We also provide a

learning complexity analysis of the aforementioned algorithms to

give an insight into algorithm execution feasibility under Edge

Computing settings.

CCS CONCEPTS
• Computer systems organization → Distributed architec-
tures; • Computing methodologies→ Modeling and simulation.

KEYWORDS
edge offloading; learning complexity analysis; markov decision

process; support vector regression;

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Reference Format:
Josip Zilic, Atakan Aral, and Ivona Brandic. 2021. Probabilistically Reli-

able and Efficient Edge Offloading. In Proceedings of ACM Conference (Con-
ference’17). ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/

nnnnnnn.nnnnnnn

1 INTRODUCTION
The resource consumption of mobile applications is increasing on

a larger scale and more rapidly than the hardware capabilities of

mobile devices. This compels researchers and developers to find

an alternative solution that is both technically and economically

sustainable. Partitioning mobile applications into smaller chunks as

application tasks and offloading them on the remote infrastructure

proved to be a viable solution [22]. Cloud data center as a remote

counterpart with superior resources appears as a prominent so-

lution to execute offloaded application tasks. However, in some

latency-sensitive applications such as live navigation, AR/VR, and

smart grids, satisfying imposed requirements are not guaranteed

due to large geographical distance and dense backhaul network

traffic between end-users and Cloud data centers. Those strict re-

quirements can be fulfilled by deploying Edge nodes in the prox-

imity of the end-users instead of utilizing the remote Cloud nodes.

This reduces geographical distance and alleviates network traffic.

However, without considering the heterogeneous resource and reli-

ability characteristics of the Edge Computing platform, failures can

occur. They may prevent or postpone the offloading process leading

to increased mobile device energy consumption and application

response time [38, 39].

To manage the Edge offloading process, a variety of offloading

sites with different resource characteristics, as well as different

types of mobile applications have to be accounted for. Additionally,

offloading sites exhibit different availability characteristics that can

disrupt the offloading process in form of failures and produce unex-

pected system costs. It is preferable to predict failures rather than

triggering reactive countermeasures after failures already happen.

Thus, our solution consists of Markov Decision Process (MDP) that

handles both the nondeterminism and the stochastic behavior of

the Edge offloading process, and the Support Vector Regression

(SVR) capable of predicting time-series reliability data. The SVR

predictability performance of the time-series data has been proven

to yield better results compared to other ML solutions [12]. Both

methods are a joint solution proposal to handle the Edge offloading

process with the objectives of reducing mobile application response

time and energy consumption of the mobile device.

Offloading frameworks that are realized as MDP approaches

are used in Mobile Cloud [31] and Mobile Edge environments [4]

without considering the impact of offloading failures. Other MDP of-

floading frameworks that are considering offloading failures [38, 39]

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

are considering only link failures or using a general simple reli-

ability model. The use of Machine Learning (ML), on the other

hand, can increase prediction accuracy by exploiting the under-

lying datasets and capturing failures that exhibit stochastic and

non-linear behavior [10, 12]. Therefore, we adopt MDP and SVR

approaches to deliver efficient and reliable Edge offloading. We per-

form evaluation based on a real-world failure dataset of Los Alamos

National Laboratory (LANL) and mobile applications are sampled

from probability distributions computed from LiveLab application

usage traces. Evaluation results show that our solution proposal can

improve time performance up to 48%, energy efficiency up to 41%,

and failure rates up to 96% compared to baseline offloading decision

engines from the literature. Moreover, we will also provide learning

complexity analysis of both mentioned algorithms to estimate com-

putational overhead by using the Probably Approximately Correct

(PAC) approach and the Vapnik–Chervonenkis (VC) dimension.

The paper is organized as follows. The background about used

methodologies is described in Section 2. Section 3 provides a system

and mathematical model of Edge offloading. Section 4 presents the

evaluation results. In Section 5, we provide learning complexity

analysis of used algorithms. Related work is discussed in Section 6.

Finally, Section 7 mentions future work and concludes the paper.

2 BACKGROUND
2.1 Mobile Applications and Edge Offloading
Mobile applications are usually composed of smaller tasks that are

mutually interdependent. Each task has its resource requirements

including the offloadability indicator which indicates the ability

of the task to be offloaded or not. Application tasks can be non-

offloadable due to dependencies on some local physical functions

(e.g. camera). Tasks can correspond to functions, classes, or threads.

Due to its partitioned nature, a mobile application can bemodeled as

a Directed Acyclic Graph (DAG) [13]. The DAG model is composed

of vertices and edges, where vertices represent the application tasks

and edges represent the task inter-dependencies. DAG models are

appropriate when the task execution order is relevant. A DAG

example of an Antivirus application is illustrated in Figure 1. The

DAG model consists of five tasks, where blue circles represent

offloadable and red circles represent non-offloadable tasks.

Figure 1: Antivirus mobile application

Edge offloading is a process where application tasks are offloaded

from a mobile device to a remote infrastructure. The offloading is

performed by a software unit called the offloading decision engine

(ODE) which is usually executed on the mobile device. There is also

the possibility that ODE is executed on a remote site to alleviate

consumption on the mobile device. This option is discussed in the

Subsection 5.3. ODE performs a decision-making function with

assistance from the prediction engine (PE) which is positioned on

each offloading site and predicts the future availability of the sites.

Once offloading is completed, the infrastructure executes tasks and

sends the output to its destination. This process repeats until the

application terminates.

The Edge offloading model is illustrated in Figure 2. The main

components of the PE engine are: (1) Failure monitoring which

collects all failure traces logs from the sites’ local storage (Step

1a) and prepares the data (Step 2a), (2) SVR outputs availability

predictions based on training samples and forwards them it to the

ODE decision engine for offloading optimization (Step 3). During

the data pre-processing stage (Step 2a), failure trace logs are parsed

and transformed into the availability distribution based on failure

frequency occurrence and life span. The data samples are inter-

preted as the probability that the offloading site will be available

for offloading and task execution. ODE architecture is similar to

[39], which collects mobile application DAG structure and its re-

source requirements, and remote infrastructure resource capacities

(Steps 1b, 1c, 2b, and 2c). Additionally, the offloading site availability

predictions from the PE engine are forwarded to the ODE engine

to output the offloading decision policy (Step 4) based on which

offloading decisions are performed (Step 5).

Figure 2: Edge offloading model

2.2 Support Vector Regression
SVR is a supervised ML algorithm that uses the regression model

upon underlying data to predict future events and outcomes. It

is based on the structural risk minimization (SRM) principle. It

improves the ML generalization performance based on the trade-off

between model accuracy during the training phase and can predict

unseen values during the testing phase [34]. The SRM minimizes

the upper bound on the generalization error and avoids overfitting.

Therefore, it can outperform other ML algorithms in predicting the

time-series data [12]. The main purpose of the SVR algorithm in this

work is to output a regression model that fits the failure trace data

to estimate the future offloading site availability. This information is

used as an input to the ODE engine for more informative offloading

decision-making (Figure 2). The algorithm is instantiated on each

offloading site and executed separately and independently. It parses

failure trace logs as training samples. In case of failure on the

offloading site, SVR is restarted and rebooted together with the

failure trace logs from the local storage.

2.3 Markov Decision Process
MDP is a discrete stochastic optimization algorithm widely used in

decision-making situations where the future outcomes are partly

probabilistic and partly under the control of a decision-maker. It

is defined as labeled transition system that consists of states 𝑆 , ac-
tions 𝐴 and transitions 𝑇 . The state represents system configuration

whereas transitions and actions define the behavior of the system.

The model can be verified with certain numerical model-checking

algorithms such as Value Iteration Algorithm (VIA) and Policy Iter-

ation Algorithm (PIA) that outputs a decision policy in terms of best

actions in the certain states. The MDP model has to be augmented

with reward functions 𝑅 to compute the aforementioned policy. The

general advantage of this approach is automatic and exhaustive

state-space search. However, in the case of larger systems, this may

result in a state-space explosion phenomenon that exponentially

prolongs the model-checking process. Theorem proving, as an alter-

native approach, can work with more accurate representations of

the system but it is a more time-consuming process and manually

obtained.

2.4 Learning Complexity Analysis
Learning complexity analysis provides the theoretical insight into

the computational overhead of employed solutions in this work. It

can express the computational and the sample complexity in terms

of training sample sizes that the ML algorithm requires to learn a

given problem. For this, we use the Probably Approximately Correct

(PAC) learning. It is a mathematical framework that estimates the

sample complexity of the ML algorithm. The goal is to determine

the upper bound on a training sample size that the ML algorithm

requires to learn or solve the problem. The PAC logic is to select a

hypothesis function ℎ with a high probability that will have a low

generalization error by approximating the target concept function

𝑐 which represents the true behavior of the system.

As a supplement to the PAC analysis, the VC dimension expresses

the capacity of the underlying model as the cardinality of the maxi-

mum number of data points that can be shattered by the samemodel

for any combination of the labels associated with those points. It is

often annotated as a𝑉𝐶 (𝐻) for a specific hypothesis space 𝐻 . This

is beneficial when the hypothesis space 𝐻 goes to infinity due to

infinite possible combinations of mapping input-output pairs. By

applying the shattering concept, the VC dimension upper bounds

the sample complexity. Alternative approaches to PAC and VC are

total mistake bound model [20] and weighted majority method

[21] but they require parameter tuning and learning performance

measures.

3 MDP-SVR OFFLOADING FRAMEWORK
3.1 System Architecture and MDP model
We adopt the architecture from [39]. This fits our needs since it

can capture (i) the Edge resource heterogeneity and the availability

diversity, (ii) interplay between a mobile device, an Edge layer, and

a Cloud data center, and (iii) the mesh network topology to support

the system robustness against failures. In the proposed architecture,

the Edge resources are diversified between three Edge server types:

(i) Edge database server (ED) which has large data storage capabili-

ties and fast network transmission rates for handling data-intensive

(DI) applications such as Antivirus scanning software or image pro-

cessing application, (ii) Edge computational server (EC) has greater
computational power that is suitable for computational-intensive

(CI) applications such as strategic games with the AI support, and

(iii) Edge regular server (ER) has intermediate resources suitable

for applications that do not require a large amount of computation

or data storage capacities, such as GPS navigation or posting on

Facebook.

To fit the Edge offloading model from Section 2.1, we created an

MDP model where offloading sites are modeled as states 𝑆 , offload-

ing decisions as actions𝐴, offloading site availability as probabilistic

transitions 𝑇 , model iterations as discrete-time epochs 𝑡 when the

offloading decision is triggered, and the mobile device energy con-

sumption and the application response time as reward functions

𝑅. Verifying the MDP model by numerical model-checking solu-

tion yields a near-optimal offloading decision policy 𝜋∗ based on

whichMDP decision-maker gives an offloading decision. Works like

[4, 31, 39] used the Value Iteration Algorithm (VIA) as a numerical

model-checking algorithm due to theoretical simplicity and ease of

implementation. We use the Policy Iteration Algorithm (PIA) since

policies can converge in much fewer iterations than state values as

in the VIA algorithm.

3.2 SVR Modelling
The main task of the SVR algorithm is to predict the unknown real-

valued function based on the past values. The prediction procedure

selects the most appropriate hypothesis function ℎ from a set of

approximating functions 𝐻 . It is selected by the quality of predic-

tion measured by the loss function L(y, ŷ), where 𝑦 represents the

actual value and ŷ represents the predicted value. The loss function

commonly used for the SVR regression is the 𝜖-insensitive loss

function proposed by [32]:

𝐿(𝑦,𝑦) =
{

0 𝑖 𝑓 |𝑦 − 𝑦 | ≤ 𝜖

|𝑦 − 𝑦 | − 𝜖 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(1)

The SVR prediction performance strictly depends on hyperpa-

rameters known as 𝐶 and 𝜖 . 𝐶 is a regularization parameter that

models the ability to generalize the unseen data as a trade-off be-

tween the training and testing phases. 𝜖 parameter determines

the level of regressor accuracy by controlling the width of the 𝜖-

insensitive area in the loss function 𝐿(𝑦,𝑦) as presented in the

Equation 1. Both parameters in the SVR implementation in vari-

ous software libraries are often determined as user-defined input

parameters. Selecting both parameters carefully can boost or un-

dermine SVR prediction performance. In the literature, there is a

large body of work that is focusing on optimizing both parameters

to increase SVR performance by applying different optimization

algorithms such as genetic [10] and distribution algorithms [18].

Instead of using a complex optimization algorithm which increases

the computational overhead drastically, we use the simple parame-

ter selection algorithm proposed by [11]. The benefits of this kind

of approach are simplicity, near-optimal performance, usability in

different application domains, and applicability for various target

functions and sample sizes. Both parameters are derived directly

from the data and their formal definitions are:

𝐶 =𝑚𝑎𝑥 (|𝑦 + 3𝜎 |, |𝑦 − 3𝜎 |) (2)

𝜖 = 3𝜎

√
𝑙𝑛(𝑚)
𝑚

(3)

where 𝑦 represents the arithmetic mean and 𝜎 represents the

standard deviation of the 𝑦 data. In this work, the 𝑦 data represents

offloading site availability.

3.3 Offloading Site Availability Model
The offloading site availability definition is expressed as a ratio

between the uptime and the total time:

𝐴 =
𝑢𝑝𝑡𝑖𝑚𝑒

𝑢𝑝𝑡𝑖𝑚𝑒 + 𝑑𝑜𝑤𝑛𝑡𝑖𝑚𝑒
(4)

The characteristics like distributed architecture, absence of sup-

port systems (power supplies, cooling equipment, etc.) and erratic

workload can be significant factors that contribute to the failure-

prone Edge infrastructure. By using the SVR model from the Sub-

section 3.2, we can predict the future offloading site availability and

mitigate offloading failures before the task offloading is performed.

The offloading site availability can be formally described as a 𝐴𝑡

availability probabilistic distribution which is defined as follows.

Equation (5) defines a operational state 𝑋 (𝑡) as a function that in-

dicates the offloading site availability as a downtime or uptime in

the 𝑡 time moment:

𝑋 (𝑡) =
{

1 𝑢𝑝𝑡𝑖𝑚𝑒

0 𝑑𝑜𝑤𝑛𝑡𝑖𝑚𝑒
(5)

The availability 𝐴(𝑡) in Equation (6) is defined probabilistically

as the expectation that the offloading site will be in the uptime

operational state 𝑋 (𝑡) at time 𝑡 :

𝐴(𝑡) = 𝑃𝑟 [𝑋 (𝑡) = 1] = 𝐸 [𝑋 (𝑡)] (6)

And consequently, Equation (7) integrates the offloading site

availability 𝐴𝑡 as a probability distribution over time as defined:

𝐴𝑡 =

∫ 𝑡

0

𝐴(𝑡)𝑑𝑡 (7)

The SVR model computes the availability estimation of the of-

floading site and forwards it to the ODE unit on the mobile device to

compute the offloading decision policy. An example of SVR predict-

ing offloading site availability is illustrated in Figure 3. 𝑥 and 𝑦 axis

represent time units (days) and availability values𝐴(𝑡) respectively,
whereas the pink curve is the real data and the green curve is the

predicted data generated by the SVR algorithm. The example is

taken from a LANL dataset for a single node. This is a representative

example of availability distribution where nodes or services tend to

be available 100% to maximize utilities and economic gains. How-

ever, due to severe failures, the availability can drop significantly

and contain unavailability spikes that can last from hours to days.

This supports the assumption that failures exhibit the non-linear

behavior and hence the Gaussian RBF kernel function is a more

justifiable kernel solution for the SVR algorithm than a linear or a

polynomial kernel.

Figure 3: SVR offloading site availability prediction

3.4 Edge Offloading Model
The offloading site is defined as the resource capacity vector 𝑞 =

(𝑓 , 𝑟𝑎𝑚, 𝑠𝑡𝑜𝑟𝑎𝑔𝑒 , 𝑏, 𝑙), where 𝑓 is the CPU computation power in

millions instructions per second MIPS, 𝑟𝑎𝑚 is the memory capacity

in GB, 𝑠𝑡𝑜𝑟𝑎𝑔𝑒 is the data storage capacity in GB, 𝑏 is the network

bandwidth in Mbps and 𝑙 is the network latency in ms. The applica-

tion task is defined as the resource requirement vector 𝑣 = (𝜔 , 𝑟𝑎𝑚,

𝑑𝑖𝑛 , 𝑑𝑜𝑢𝑡 , 𝑜 𝑓 𝑓), where 𝜔 is the CPU computation power in millions

of instructions MI, 𝑟𝑎𝑚 is the memory consumption in GB, 𝑑𝑖𝑛 is

the input data size in KB, 𝑑𝑜𝑢𝑡 is the output data size in KB and 𝑜 𝑓 𝑓

indicates binary task offloadability.

The task offloading of the same task 𝑣 can be repeated more

than once during single mobile application execution under the

condition that failure was observed during the offloading process.

The process is repeated until the alternative offloading solution is

found that mitigated the failure. To classify the offloading attempt

as valid, the resource constraints of the offloading sites has to be

respected. The following conditions has to be fulfilled:

(1)

∑
𝑣∈𝑉𝑞 (𝑡) (𝑟𝑎𝑚𝑣) ≤ 𝑟𝑎𝑚𝑞

(2)

∑
𝑣∈𝑉𝑞 (𝑡) (𝑑𝑣𝑖𝑛 + 𝑑

𝑣
𝑜𝑢𝑡) ≤ 𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝑞

(3) 𝛿𝑖𝑛 (𝑣) = ∅
(4) 𝑜 𝑓 𝑓𝑣 = 1

Cases (1) and (2) validates that all application tasks offloaded

on the offloading site 𝑞 in the discrete-time epoch 𝑡 , denoted as

𝑉𝑞 (𝑡), do not exceed RAM and data storage capacities. Moreover, the

application task 𝑣 to be offloaded, must not have any remaining task

input dependencies 𝛿𝑖𝑛 (𝑣) to other preceded tasks before offloading,

according to case (3), and must be annotated as offloadable task

𝑜 𝑓 𝑓𝑣 as in case (4).

3.5 Response Time Model
The response time model consists of the local computation time

𝑡𝑐 , the uploading data transfer time 𝑡𝑢 and the downloading data

transfer time 𝑡𝑑 . The local computation time is formally defined as

a ratio between the computational amount 𝜔𝑣 of the application

task 𝑣 and the CPU frequency 𝑓𝑞 of the offloading site 𝑞:

𝑡𝑐 (𝑣, 𝑞) =
𝜔𝑣

𝑓𝑞
,∀𝑣 ∈ 𝑉 ,∀𝑞 ∈ 𝑄 (8)

where 𝑉 is denoted as a set of tasks from particular mobile

application, whereas 𝑄 represents a set of offloading sites. Upload

and download communication time is defined as time consumed for

data transfer between the source𝑞𝑖 and the destination𝑞 𝑗 offloading

sites:

𝑡𝑢 (𝑣, 𝑞𝑖 , 𝑞 𝑗) =
𝑑𝑣𝑢

𝑏𝑞𝑖𝑞 𝑗

+ 𝑙𝑞𝑖𝑞 𝑗
,∀𝑣 ∈ 𝑉 ,∀𝑞𝑖 , 𝑞 𝑗 ∈ 𝑄, 𝑖 ≠ 𝑗 (9)

𝑡𝑑 (𝑣, 𝑞𝑖 , 𝑞 𝑗) =
𝑑𝑣
𝑑

𝑏𝑞𝑖𝑞 𝑗

+ 𝑙𝑞𝑖𝑞 𝑗
,∀𝑣 ∈ 𝑉 ,∀𝑞𝑖 , 𝑞 𝑗 ∈ 𝑄, 𝑖 ≠ 𝑗 (10)

where 𝑏𝑞𝑖𝑞 𝑗
and 𝑙𝑞𝑖𝑞 𝑗

represents bandwidth and latency, and 𝑑𝑣𝑢
and 𝑑𝑣

𝑑
represent upload and download data sizes respectively for

the application task 𝑣 . Based on Equations (8), (9) and (10), the task

response time 𝑡𝑣 is defined as:

𝑡𝑣 (𝑣, 𝑞𝑖 , 𝑞 𝑗) = 𝑡𝑢 (𝑣, 𝑞𝑖 , 𝑞 𝑗) + 𝑡𝑐 (𝑣, 𝑞 𝑗) + 𝑡𝑑 (𝑣, 𝑞 𝑗 , 𝑞𝑖) (11)

If successive application tasks are offloaded and executed on

the same offloading site, i.e., 𝑞𝑖 = 𝑞 𝑗 , then the equation above

is transformed into 𝑡𝑣 (𝑣, 𝑞𝑖 , 𝑞 𝑗) = 𝑡𝑐 (𝑣, 𝑞 𝑗) where uploading and

downloading data transfers are omitted. When the entire mobile

application is executed, then the application response time 𝑡𝑉 is

formally defined at top of Equation (11):

𝑡𝑉 =
∑
𝑣∈𝑉

∑
𝑞𝑖 ∈𝑄

∑
𝑞 𝑗 ∈𝑄

𝑜 𝑓 𝑓 (𝑣, 𝑞𝑖 , 𝑞 𝑗) × 𝑡𝑣 (𝑣, 𝑞𝑖 , 𝑞 𝑗) (12)

where 𝑜 𝑓 𝑓 (𝑣, 𝑞𝑖 , 𝑞 𝑗) represents the binary function that verifies

whether application task 𝑣 is offloaded from the source site 𝑞𝑖 to

the destination site 𝑞 𝑗 . Chaining different mobile applications into

single execution sequence is defined in Equation 13. This is similar

to work [14] where mobile workload model is introduced as a

set of mobile applications prepared for execution. Thus, we are

introducing𝑊 as a workload chain of multiple mobile applications

and measuring the total response time 𝑡𝑊 :

𝑡𝑊 =
∑
𝑉 ∈𝑊

𝑡𝑉 (13)

3.6 Energy Consumption Model
The energy consumption model is defined analogously to response

time model Equation (11). The energy consumption is considered

only from a mobile device perspective since energy supplies on the

infrastructure are perceived as unlimited. The energy consumption

model of the mobile device 𝑒𝑣 is defined as:

𝑒𝑣 (𝑣, 𝑞) = 𝑡𝑐 (𝑣, 𝑞) × 𝑝𝑐 + 𝑡𝑢 (𝑣, 𝑞) × 𝑝𝑢 + 𝑡𝑑 (𝑣, 𝑞) × 𝑝𝑑 (14)

where analogously to Equations (12) and (13) we can measure

over entire workload chain𝑊 as:

𝑒𝑉 =
∑
𝑣∈𝑉

∑
𝑞𝑖 ∈𝑄

∑
𝑞 𝑗 ∈𝑄

𝑜 𝑓 𝑓 (𝑣, 𝑞𝑖 , 𝑞 𝑗) × 𝑒𝑣 (𝑣, 𝑞𝑖 , 𝑞 𝑗) (15)

𝑒𝑊 =
∑
𝑉 ∈𝑊

𝑒𝑉 (16)

where 𝑝𝑐 is the mobile power consumption for the local com-

putation, 𝑝𝑑 is the mobile power consumption when downloading

data and 𝑝𝑢 is the mobile power consumption when uploading

data. If two successive tasks are executed on the mobile device then

equation above is transformed in 𝑒𝑣 (𝑣, 𝑞) = 𝑡𝑐 (𝑣, 𝑞) × 𝑝𝑐 where

power consumption for transferring data is omitted. In the case

that mobile device only offloads task on the remote infrastruc-

ture, then the energy consumption accounts only for upload data

transmission 𝑒𝑣 (𝑣, 𝑞) = 𝑡𝑢 (𝑣, 𝑞) × 𝑝𝑢 . Last case is when application

task 𝑣 is executed on the remote infrastructure without interaction

with the mobile device. Although, the mobile device is not per-

forming task execution, it still maintains the operational state and

enters in the idle mode where power saving modes are activated

to reduce the energy consumption. This is formally described as

𝑒𝑣 (𝑣, 𝑞) = 𝑡𝑢 (𝑣, 𝑞) × 𝑝𝑖𝑑𝑙𝑒 where 𝑝𝑖𝑑𝑙𝑒 is the power consumption in

the idle mode. The assumption about the mobile power parameters

when computing the energy consumption cost is considered as 𝑝𝑢
> 𝑝𝑑 > 𝑝𝑐 > 𝑝𝑖𝑑𝑙𝑒 based on previous work [19].

3.7 Failure Detection Model
The most widely used concept for the failure detection strategy

is a heartbeat protocol. It sends ping messages every fixed time

interval to other offloading sites. If the message is not received after

the timeout period then the suspicious offloading site 𝑞 is added

to the list of suspected sites. When the message is received, then

consequently, the site 𝑞 is removed from the list. This approach is

responsible for maintaining the integrity of the entire system archi-

tecture. The research about heartbeat improvements is reviewed

in [7], but we use real-world implementation with a fixed number

of intervals and a timeout period. According to [1], the recom-

mended configuration settings for heartbeat protocols are limiting

time interval to 150 ms and 10 timeouts. This setting captures the

network variability due to versatile network delays between the

network devices and the instance pauses caused by maintenance

actions and software updates. Therefore, the maximum period that

elapses when the offloading site is considered to be unavailable is

1.5 seconds which implies that the response time failure cost is fixed

to 𝛼𝑡 = 1.5 and task response time Equation (11) is updated into

Equation (17). In the case that no offloading failures occur during

the offloading process, then the time failure cost is 𝛼𝑡 = 0.

𝑡𝑣 (𝑣, 𝑞𝑖 , 𝑞 𝑗) = 𝑡𝑢 (𝑣, 𝑞𝑖 , 𝑞 𝑗) + 𝑡𝑐 (𝑣, 𝑞 𝑗) + 𝑡𝑑 (𝑣, 𝑞 𝑗 , 𝑞𝑖) + 𝛼𝑡 (17)

However, regarding the energy consumption failure cost 𝛼𝑒 ,

since it is measured from the mobile device perspective, we dis-

tinguish three separate use cases. First, when the task is offloaded

from the remote infrastructure to the mobile device and failure

occurs during the download data transmission. Second, when the

task is offloaded from the mobile device to the remote infrastructure

and the failure occurrs during the upload data transmission. And

thirdly, when the task is offloaded between two remote offloading

sites while the mobile device is hibernating in the idle operational

state. All three cases are shown in Equation (18) respectively and

they update the energy consumption model in Equation (19) that is

extended with an additional energy cost factor 𝛼𝑒 .

𝛼𝑒 =

𝛼𝑡 × 𝑝𝑑
𝛼𝑡 × 𝑝𝑢
𝛼𝑡 × 𝑝𝑖𝑑𝑙𝑒

(18)

𝑒𝑣 (𝑣, 𝑞) = 𝑡𝑐 (𝑣, 𝑞) × 𝑝𝑐 + 𝑡𝑢 (𝑣, 𝑞) × 𝑝𝑢 + 𝑡𝑑 (𝑣, 𝑞) × 𝑝𝑑 + 𝛼𝑒 (19)

3.8 MDP-SVR Edge Offloading Algorithm
The Algorithm 1 shows the MDP-SVR Edge offloading algorithm.

The goal is to obtain reliable Edge offloading decisions through

the SVR availability prediction of the offloading sites and efficient

offloading to minimize both mobile device energy consumption and

application response time. Coupling the offloading reliability with

the performance efficiency boosts the latter. Additionally, the Edge

offloading process is shown in Algorithm 2 which incorporates the

MDP-SVR algorithm for obtaining the offloading decision policies

and executing them accordingly in the runtime.

In the Algorithm 1, the for loop on Lines 4-9 iterates over the

application tasks and computes the energy consumption and the

response time assuming it is executed on each offloading site and

stores in arrays on Lines 8 and 9. This is used later by the PIA

algorithm that computes which offloading site is the best choice

for offloading. In Line 12, the SVR algorithm predicts the offloading

site availability based on the training dataset and forwards the

estimation to Line 13 based on the computed probability matrix 𝑃 .

On Line 14, the MDP reward matrix 𝑅 is computed and forwarded

it together with other MDP parameters to the PIA algorithm that

computes the offloading decision policy 𝜋∗ (𝑠) (Line 15) and returns
the output in Line 16. In Algorithm 2, the Edge Offloading Process

is shown where task offloading is performed based on the output

of the MDP-SVR algorithm given in Algorithm 1. In Lines 1-4 are

the variables declaration and getting offloading decision policy

𝜋∗ (𝑠) from the MDP-SVR algorithm. Then in the for loop (Lines

5-19), the task offloading is performed based on the offloading

decision policy. If the task is offloaded on a site that experienced a

failure during runtime then offloading is classified as failed (Lines

8) and the next best alternative should be considered (Line 12). The

iteration is stopped until the alternative offloading is successful on

site that does not experience the failure (Lines 15-16) or all possible

solutions are exhausted due to failures or limited resources on the

infrastructure (Line 10). The output result of the entire offloading

process is a feasible offloading policy that succeeds to offload task

(Line 20).

4 EVALUATION
4.1 Experimental Setup
We evaluate the proposed MDP-SVR framework under simulation

conditions and compare it with other baseline ODE decision en-

gines. The simulator is implemented in Python 3.6.5 on machine

ThinkPad T470p machine that runs 64-bit Windows 10 OS with 16

Gb RAM, and dual-core i7-7700HQ CPU of 2.80 GHz and 2.81 GHz.

We provide the simulator available to other researchers online
1
.

1
https://github.com/jzilic91/edge/tree/master/MDP-SVR

Algorithm 1 MDP-SVR Algorithm

1: procedure MDP_SVR_ALGO(𝑆,𝐴, 𝑡𝑟𝑎𝑖𝑛_𝑑𝑎𝑡𝑎𝑠𝑒𝑡, 𝑡𝑎𝑠𝑘𝑠)

2: 𝑒𝑛𝑒𝑟𝑔𝑦_𝑣𝑒𝑐𝑡𝑜𝑟 ← 𝑎𝑟𝑟𝑎𝑦 () ⊲ Store energy consumption for

each offloading sites

3: 𝑡𝑖𝑚𝑒_𝑣𝑒𝑐𝑡𝑜𝑟 ← 𝑎𝑟𝑟𝑎𝑦 () ⊲ Store response time for each

offloading site

4: for each state 𝑣 in 𝑡𝑎𝑠𝑘𝑠 do
5: for each state 𝑞 in 𝑆 do
6: 𝑒𝑛𝑒𝑟𝑔𝑦 ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑒𝑛𝑒𝑟𝑔𝑦 (𝑣, 𝑞)
7: 𝑡𝑖𝑚𝑒 ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑡𝑖𝑚𝑒 (𝑣, 𝑞)
8: 𝑒𝑛𝑒𝑟𝑔𝑦_𝑣𝑒𝑐𝑡𝑜𝑟 .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑒𝑛𝑒𝑟𝑔𝑦)
9: 𝑡𝑖𝑚𝑒_𝑣𝑒𝑐𝑡𝑜𝑟 .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑡𝑖𝑚𝑒)
10: end for
11: end for
12: 𝑠𝑣𝑟_𝑎𝑣𝑎𝑖𝑙_𝑝𝑟𝑒𝑑𝑖𝑐𝑡 ← 𝑆𝑉𝑅(𝑡𝑟𝑎𝑖𝑛_𝑑𝑎𝑡𝑎𝑠𝑒𝑡) ⊲ Predict

availability

13: 𝑃 ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑃_𝑚𝑎𝑡𝑟𝑖𝑥 (𝑠𝑣𝑟_𝑎𝑣𝑎𝑖𝑙_𝑝𝑟𝑒𝑑𝑖𝑐𝑡)
14: 𝑅 ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑅_𝑚𝑎𝑡𝑟𝑖𝑥 (𝑒𝑛𝑒𝑟𝑔𝑦_𝑣𝑒𝑐𝑡𝑜𝑟, 𝑡𝑖𝑚𝑒_𝑣𝑒𝑐𝑡𝑜𝑟)
15: < 𝜋∗, 𝑄 >← 𝑃𝐼𝐴(𝑆,𝐴, 𝑃, 𝑅, 𝑠0) ⊲ PIA algorithm returns

offloading decision policy

16: return < 𝜋∗, 𝑄 >

17: end procedure

Algorithm 2 Edge Offloading Process

1: procedure OFFLOADING_PROCESS(𝑡𝑟𝑎𝑖𝑛_𝑑𝑎𝑡𝑎𝑠𝑒𝑡, 𝑡𝑎𝑠𝑘𝑠)
2: 𝑆 ← (𝑞𝑚𝑑 , 𝑞𝑒𝑑 , 𝑞𝑒𝑐 , 𝑞𝑒𝑑 , 𝑞𝑐𝑑) ⊲ Offloading sites

3: 𝐴← (𝑎𝑚𝑑 , 𝑎𝑒𝑑 , 𝑎𝑒𝑐 , 𝑎𝑒𝑑 , 𝑎𝑐𝑑) ⊲ Action decisions

4: < 𝜋∗, 𝑄 >← 𝑀𝐷𝑃_𝑆𝑉𝑅_𝐴𝐿𝐺𝑂 (𝑆,𝐴, 𝑡𝑟𝑎𝑖𝑛_𝑑𝑎𝑡𝑎𝑠𝑒𝑡, 𝑡𝑎𝑠𝑘𝑠)
5: for each state 𝑠 in 𝑆 do
6: 𝑎 ← 𝜋∗ (𝑠) ⊲ for state 𝑠 get best action 𝑎

7: while True do
8: if 𝜆𝑇 (𝑠,𝑎) then ⊲ if offloading failure occurs then

another 𝑎 action should be considered

9: 𝑄 ← 𝑄 − {(𝑠, 𝑎)}
10: if 𝑄 = ∅ then return "No feasible solution"

11: end if
12: 𝑎 ← argmax𝑎 [𝑄 (𝑠, 𝑎)] ⊲ get next best action 𝑎

13: continue

14: else
15: 𝜔 = 𝜔 + {(𝑠, 𝑎)} ⊲ store feasible action 𝑎

16: break

17: end if
18: end while
19: end for
20: return 𝜔 ⊲ return feasible offloading policy

21: end procedure

4.1.1 Simulation scenario. The workload chain of mobile appli-

cations initiates on the mobile device and terminates when all

tasks are executed. During the application runtime, ODE computes

the offloading decision policy and offloads tasks accordingly. The

offloading failure can occur during the runtime on the server or

network links and failure costs are computed accordingly. Addi-

tionally, the assumption is that the ODE performs only the data

offloading but not the computation offloading. This is justifiable

https://github.com/jzilic91/edge/tree/master/MDP-SVR

since the computation offloading can raise security and privacy

issues. For example, offloading non-verified and malicious snippets

of executable code can damage end-users and service providers, eco-

nomically and legally. Instead, the computation part of the mobile

application is replicated on all offloading sites as a macro-service.

Since the system architecture that we use in the simulation model

is limited in size, this does not represent a system bottleneck.

4.1.2 Offloading sites. The simulation model includes five offload-

ing sites which consist of a single mobile device, a single Cloud

data center, and three Edge servers where each is a different type

as explained in 3.1. The offloading site resources are limited and

assumed static during the runtime. The hardware and network

specifications are described in Tables 1 and 2 similar to [39] which

suits our needs since it expresses the magnitude of the hardware

and network capabilities ratio between the complementary parts

of the infrastructure appropriately. The hardware and network

capabilities that are included in the simulation model are CPU com-

putation power, RAM capacity, data storage size, network latency,

and network bandwidth rate. The entire infrastructure follows the

mesh network topology which implies that each offloading site

has assured at least one network link towards all other offloading

sites. This topology is considered to be robust against failures and

reduces maintenance costs [6]. The wireless network links of the

mobile device are assumed to follow IEEE 802.11 wireless network

speeds, while network links between Edge and Cloud are fixed

based on already established Ethernet network standards such as

Fast Ethernet (100 Mbps) and 1GBit Ethernet links (987 Mbps). This

implies that remote infrastructure together with a mobile device is

localized at a single geographical location. Notice that connections

with Cloud also exhibit the Internet latency distribution 𝜑(𝜇, 𝜎)
due to the transmission delay which varies between 100 and 300

ms according to [15]. To obtain the latency values between the

aforementioned range, we employ a Gaussian distribution with

mean 𝜇 = 200 and standard deviation 𝜎= 33.5 ms similar to [13].

Table 1: Hardware specifications

Node CPU
(GHz)

RAM
(GB)

Storage
(GB)

Edge database server 5 8 500

Edge computational

server

8 8 250

Edge regular server 5 8 250

Cloud data center 12 128 1000

Mobile device 1 8 16

Table 2: Network specifications

Links Latency (ms) Bandwidth (Mbps)
Mobile Edge 15 5.5/20

Mobile Cloud 54 + 𝜑(𝜇, 𝜎) 20

Edge Cloud 15 + 𝜑(𝜇, 𝜎) 100/987

Edge Edge 10 100/987

4.1.3 Mobile applications. The mobile applications that will be

used for the Edge offloading evaluation are (i) Facebook as a use

case scenario of posting pictures on Facebook, (ii) GPS navigation
that navigates the traffic drivers to their destination, (iii) Facerecog-
nizer, as the image processing application which recognizes facial

structures in the images, (iv) Antivirus that scans the software and
compares potential software virus signatures with the registered

ones in the database, and (v) Chess, as an interactive game where

AI software agent tries to anticipate player chess moves. All five

aforementioned mobile applications are sampled according to the

probability distribution computed from the LiveLab application

usage traces [27] as in previous work [14]: (i) Facebook: 45%, (ii)
GPS navigation: 30%, (iii) Facerecognizer : 10%, (iv) Antivirus: 5%, (v)
Chess: 10%. The probability is defined as the likelihood that the

next application will be ready for offloading. Within the same ap-

plication, tasks can be diverse in all segments. Table 3 shows the

application task classification which are referenced in Tables 4, 5,

6, 7, and 8.

Table 3: Application task specifications

Type CPU Input data Output data
DI 100-200 MI 30-40 KB 50-60 KB

CI 550-650 MI 4-8 KB 4-8 KB

Moderate 100-200 MI 4-8 KB 4-8 KB

Table 4: Facebook task specifications

Task Type RAM Offloadable
FACEBOOK_GUI Moderate 1 GB False

GET_TOKEN Moderate 1 GB True

POST_REQUEST Moderate 2 GB True

PROCESS_RESPONSE Moderate 2 GB True

FILE_UPLOAD DI 2 GB False

APPLY_FILTER DI 2 GB True

FACEBOOK_POST DI 2 GB False

OUTPUT Moderate 1 GB False

Table 5: GPS Navigator task specifications

Task Type RAM Offloadable
CONF_PANEL Moderate 1 GB False

GPS Moderate 3 GB False

CONTROL CI 5 GB True

MAPS DI 5 GB True

PATH_CALC DI 2 GB True

TRAFFIC DI 1 GB True

VOICE_SYNTH Moderate 1 GB False

GUI Moderate 1 GB False

SPEED_TRAP Moderate 1 GB False

Table 6: Facercognizer task specifications

Task Type RAM Offloadable
GUI DI 1 GB False

FIND_MATCH DI 1 GB True

INIT DI 1 GB True

DETECT_FACE DI 1 GB True

OUTPUT DI 1 GB False

Table 7: Antivirus task specifications

Task Type RAM Offloadable
GUI Moderate 1 GB False

LOAD_LIBRARY DI 1 GB True

SCAN_FILE DI 2 GB True

COMPARE DI 1 GB True

OUTPUT Moderate 1 GB False

Table 8: Chess task specifications

Task Type RAM Offloadable
GUI Moderate 1 GB No

UPDATE_CHESS Moderate 1 GB Yes

COMPUTE_MOVE CI 2 GB Yes

OUTPUT Moderate 1 GB No

4.1.4 Failure dataset. Currently, there does not exist a real-world
Edge Computing failure dataset that is available for scientific re-

search due to the novelty of technology and equipment accessibility.

Consequently, we adopt failure traces from a general distributed

computing infrastructure to the Edge Computing scenario. The

dataset is made publicly available by Los Alamos National Labora-

tory (LANL) [26]. Although the LANL dataset is not collected on

an Edge infrastructure, it possesses certain properties that suit our

scenario such as a large number of computational nodes, distributed

geographical locations, and heterogeneous hardware characteristics.

The LANL dataset contains around 23,000 failure traces recorded

on 22 different systems at the LANL site. It covers 4,750 nodes

with 24,101 processor units with the life span from 1996 to 2005.

Schroeder and Gibson [26] provide a detailed list of hardware char-

acteristics for each of 22 systems with computation and data storage

capabilities. In our work, these real-world failures are incorporated

into the simulation model as failures at offloading sites. We clas-

sify them based on the aforementioned hardware characteristics.

Since our focus is estimating offloading site availability, we com-

pute availability distribution 𝐴𝑡 according to Equations, (4) (5), (6),

and (7) instead of directly parsing failure times. Training and testing

data points are sampled from availability distribution 𝐴(𝑡) that is
computed from different nodes. Each data point is interpreted as

a probability that the observed offloading site will be in an opera-

tional and committable state when the task is offloaded on that site

for execution.

Computing the availability for the entire LANL dataset is not

computationally feasible due to a wide lifespan and a large number

of nodes. Moreover, aggregating availability distributions over all

nodes likely results in a randomized distribution that hardly exhibits

any kind of pattern. Instead, we pick several nodes from the dataset

to compute availability distributions similar to previouswork [8, 30].

The overview of selected nodes from the LANL dataset is shown in

Table 9. The nodes are selected according to their availability levels

categorized as low, medium and high relative to other nodes in the

same dataset configuration. Additionally, high volatile node is also
present which presents a node that is highly available but exhibits

a larger variance in the availability sampling distribution due to a

few severe failures which are observed as an outlier.

The resources are named <systemID_nodenumber> where both
index numbers are obtained from the original dataset. The selected

nodes, together with the aforementioned availability levels, are

categorized according to the hardware characteristics as explained

in Subsection 3.1. The nodes from systems 5 and 7 are most suitable

to the Edge database (ED) category due to a large number of nodes

(larger data storage). The edge computational (EC) availability dis-

tribution is sampled from nodes of systems 19 and 20 which have a

higher ratio of processors per node (higher computational power).

Edge regular (ER) is sampled from 3, 4, and 16 systems due to lower

processor per node ratio, a minimum quantity of network interface

cards, and a moderate number of nodes compared relatively to the

Edge database (ED) and the Edge computational (EC). The Cloud

category is sampled only from 22_0 node since this single node

has the highest processor per node ratio and RAM capacity in the

entire dataset, which represents resource abundance in the Cloud

data centers (CD).

4.2 Simulation Results
4.2.1 Baseline decision engines and confidence intervals. For the
performance comparison, we introduce two baseline ODE engines

from the state-of-the-art solutions in literature, (i) EFPO [39] han-

dles the offloading mechanism through the MDP process with a

probabilistic reliability model based on the general bathtub curve

for the repairable systems from the reliability engineering [28],

and (ii) Energy Efficient (EE) refers also to the MDP control offload-

ing process but without the failure predictability feature. In the

simulation evaluation, we chain 40 mobile applications into a sin-

gle workload execution that is executed successively and repeated

10,000 times to gain the statistical significance and the result va-

lidity within the 95% confidence interval. In all related response

time results, the confidence interval is in the worst-case ± 0.082 s

while for the energy consumption is ± 0.073 J. For failure rates, the

confidence interval in the worst case is up to ± 0.0711 failures. As a

worst-case, we refer to the dataset configuration that exhibits high-

est result deviation. The workload chain of 40 mobile applications

is selected appropriately as a middle-ground due to the simulation

high time-consumption, which can last more than a day, and a

sufficient number of various application executions for statistical

significance.

4.2.2 Offloading results. Figures 4 and 5 illustrates the mobile ap-

plication response time and the mobile device energy consumption

for the workload chain of 40 mobile applications. In both figures,

the MDP-SVR offloading algorithm outperforms both EFPO and EE

decision engines in all 5 dataset configurations. Both response time

and energy consumption results are similar due to the linear rela-

tionship between the both models that are explained in Section 3.5

Table 9: Dataset configurations

Dataset configurations

Offloading Site Low availability
EC (DC1)

Medium avail-
ability EC (DC2)

Medium avail-
ability EC and ER
(DC3)

High volatility
ER (DC4)

High availability
Edge (DC5)

Edge database (ED)

High availability

ED (node: 7_1)

High availability

ED (node: 5_158)

High availability

ED (node: 5_165)

High availability

(node: 5_243)

High availability

ED (node: 5_48)

Edge computational (EC)

Low availability EC

(node: 19_1)

Medium availabil-

ity EC (node: 19_11)

Medium availabil-

ity EC (node: 19_4)

High availability

EC (node: 19_8)

High availability

EC (node: 20_41)

Edge regular (ER)

High availability ER

(node: 3_0)

High availability ER

(node: 16_80)

Medium availabil-

ity ER (node: 4_55)

High volatility ER

(node: 4_1)

High availability ER

(node: 4_3)

Cloud (CD) Cloud (node: 22_0) Cloud (node: 22_0) Cloud (node: 22_0) Cloud (node: 22_0) Cloud (node: 22_0)

Figure 4: Application response time Figure 5: Mobile energy consumption Figure 6: Offloading failure rates

and 3.6 in detail. In most cases, the EE engine has the worst perfor-

mance due to a lack of failure predictability features. This causes

a larger quantity of observed costly offloading failures that rises

to 30% (Figure 6). Additionally, the significant amount of tasks are

offloaded on the remote Cloud (up to 22.27% in Figure 7d) which is

much more then other two alternatives (between 0.32% in Figure 7c

and 3.38% in Figure 7a). Consequently, this baseline exhibits worse

performance due to larger network latency and lower bandwidth

rate between the mobile device and the Cloud. EFPO, on the other

hand, yields moderate performance but worse comparing to our

MDP-SVR solution since the general reliability bathtub concept

is in practice rarely replicated [28]. The MDP-SVR relies on the

historical training data which gives more accurate and reliable in-

formation about the specific offloading site failure behavior. For

instance, in dataset configuration 2, the MDP-SVR is absolutely

and relatively superior than in other dataset configurations since

the failure rate is around 1% (Figure 6). This dataset configuration

is specific since it exhibits the highest quantity of failures of all

configurations, especially on the Edge Computational server which

the MDP-SVR in Figure 7b estimated as an unreliable offloading

site. Only 3.21% of tasks are offloaded on the aforementioned site.

The prediction capabilities of theMDP-SVR algorithm are proved

to be a viable solution that can handle the availability distributions

that exhibit more volatile behavior. EFPO and EE, due to the ab-

sence of a qualitative prediction engine, suffered the highest failure

rates up to almost 30% as seen in Figure 6 in the dataset configu-

ration 2. On the other hand, dataset configuration 5 exhibits the

smallest number of failures, and consequently, the time and energy

performance of all three solutions are closer than in other dataset

configurations, which is between 33 and 36 seconds and 33 and 36

joules respectively. When the amount of failures is smaller then all

three solutions exhibit similar performances since all depend on the

same MDP control offloading algorithm. However, regarding the

offloading reliability, in the same dataset configuration, the MDP-

SVR did not manage to outperform the EFPO algorithm where the

failure rate is up to low 1.5% (Figure 6). The reason lies in the pa-

rameter selection of the SVR parameters mentioned in Section 3.2.

Although parameter selection can handle outliers that are specific

to the availability distributions, its near-optimal performance can-

not handle all cases, specifically when a smaller quantity of failures

is observed.

Regarding the offloading distributions, there are several insights

worthy of mentioning. The EE ODE engine in 3 out of 5 dataset

configurations (Figures 7b, 7d, 7e), ignores the Edge Regular offload-

ing site completely since it is resourcefully inferior to the other

offloading sites. The MDP-SVR discriminates Edge Regular even

more since combined with the availability data it becomes even less

favorable due to higher failure rates on the offloading site. Moreover,

MDP-SVR also ignores the Cloud data center offloading site. This

is due to several factors. First, unfavorable network characteristics

yields extended task offloading. Second, using the same node 22_0

during the entire experiment yields static and reliable results. And

lastly, from the availability perspective, the Cloud is perceived as

an moderately available offloading site. Although the Cloud should

be more available site due to redundant hardware and network

connections, the real-world node 22_0, which represents the Cloud

in the simulation model, is integrated into the LANL system in the

last year of the measurement. This implies that a significant part

of the node’s lifespan was in the ’infant mortality’ phase where

failure rates are higher due to software upgrades, installation er-

rors, and mishandling. The MDP-SVR always finds at least one

available Edge offloading site with sufficient resources that yields a

faster and more reliable solution. EFPO, on the other hand, does not

discriminate particular offloading sites as strong as the aforemen-

tioned decision engines. The reason lies in the bathtub reliability

curve which depends on the reliability parameter MTBF (mean-

time-between-failures) which does not capturing the complexity of

the failure behavior during the lifespan. It is assumed to function

in the general situation where the system is operating in the so-

called ’useful life period’ where failure rates are low, constant, and

appearing randomly. This ODE can yield higher performance and

reliability than the case without the failure predictability feature as

the EE but not higher accuracy enough to overperform MDP-SVR.

5 LEARNING COMPLEXITY ANALYSIS
The main goal of the learning complexity analysis is to estimate

the computational overhead of the SVR and the MDP algorithms

used in the offloading site availability estimation and the optimal

offloading approximation. In the context of limited Edge resources

and expansive ML computational overhead, it is vital to determine

the feasibility of the proposed solution.

5.1 SVR PAC Analysis
The formal definition of an upper bound on the sample complexity

for the SVR is given by [16]:

𝑚 ≤ 1

𝜖 (1 −
√
𝜖)

(
2𝑉𝐶 (𝐻) ln 6

𝜖
+ ln

2

𝛿

)
,∀0 < 𝛿 < 1 (20)

where 𝑚 is the training sample size, 𝜖 is error accuracy, 𝜎 is

confidence level and 𝑉𝐶 (𝐻) is the VC dimension of the hypothesis

space 𝐻 . The Equation (20) computes the sample complexity for

hypothesis spaces 𝐻 that exhibit on real-valued attributes in the

training data. This fits our SVR prediction model for the offloading

site availability distribution. The𝑉𝐶 (𝐻) is the only parameter from

Equation (20) that is not explicitly user-defined and it depends on

the used kernel model. The VC dimension for the linear SVM mod-

els is 𝑉𝐶 (𝐻) = 𝑑 + 1 where 𝑑 represents the data dimensionality

[34]. For instance, if the dataset is defined in the 2-dimensional

space (𝑑 = 2), then 𝑉𝐶 (𝐻) = 3. The interpretation is that the linear

SVM model can shatter a maximum of 3 data points, which are

defined in the 2-dimensional space. Similar for the polynomial SVM

models where the VC dimension is defined as 𝑉𝐶 (𝐻) = (𝑑+𝑝−1

𝑝)
with 𝑝 as the degree of the used polynomial model [9]. The third

option for an SVMmodel is a Gaussian model so-called Radial Basis

Function (RBF). This model has been proven to have better predic-

tion performance than other aforementioned models [29]. However,

in work [9] it is mentioned that due to the efficiency and complexity

of RBF kernel, it can shatter an infinite number of data points which

implies that the VC dimension is𝑉𝐶 (𝐻) = ∞. Importing this value

into the Equation (20), the upper bound is eliminated since the

number of training samples goes to∞. While this problem may not

be formally PAC learnable, the work of [33] shows that theoretical

considerations are overly pessimistic in a practical setting. Based on

this finding, the SVR empirically can have a good performance de-

spite the theoretical estimation of the sample complexity. Although

in a theoretical setting it is assumed that the data is identically and

independently distributed, in practice this is usually not the case.

This allows our model to learn from patterns observed in real-world

data even in the absence of theoretical guarantees. Consequently,

the SVR algorithm never reaches its full capacity which produces

the discrepancy between the theoretical and the empirical results.

We will show this in Subsection 5.2.

The computational complexity is the second characteristic of the

SVR algorithm that we want to take into consideration. Research

[2] showed that the computational complexity of the SVM is𝑂 (𝑚3)
where𝑚 represents the training sample size. This complexity is

considered to be computationally intensive as long the training

sample size is large. Its effect on time consumption of the SVR

algorithm will be empirically verified in Section 5.2. The author of

the aforementioned work performed the complexity analysis upon

the LibSVM library on which our SVR model is based on using the

wrapper Python library sklearn.svm.

5.2 Empirical Results of SVR Learning
Complexity Analysis

There is a discrepancy between the theoretical and the empirical

results due to the agnostic distribution-free setting in theory and the

real-world data distribution in practice. The empirical SVR training

time measurements together with the training sample sizes are

presented in Figure 8a. The SVR training time strongly depends

on the training sample size and exhibits a poly-like appearance

as analyzed in Section 5.1. Each data point is measured separately

from the aforementioned nodes from Table 9. With finite but large

training sample sizes, the SVR training time converges in a fast

period. The maximum training time is 0.389 s with a sample size of

2124 data points from the node 3_0. While predictions in related

works [12, 18] are generated incrementally in an online fashion,

our employed algorithm instead enables us to create predictions for

the whole test set in a 4-to-1 (80%-20%) training-test setup, which

avoids continuous algorithm execution and resource consumption.

For further execution, it can be extended to re-trigger periodically

to keep predictions up-to-date or measuring an error accuracy

continuously and triggering SVR once accuracy goes below some

defined threshold. Moreover, the model quality measures should

also be applied to evaluate the performances of the SVR and the

impact of the sample complexity.

Figure 8b illustrates more random-like distribution of the depen-

dency between R2 score and NRMSE (normalized root mean square

error) on the one hand and training sample sizes on the other hand.

For a reminder, each data point is measured from separate nodes

that are shown in Table 9. Each node has a different training sample

size due to different life span and exhibits different availability dis-

tribution. The results show that predicting data from separate nodes

yields different results since determining the SVR hyperparameters

is data-dependent (Section 3.2). This acknowledges that the estima-

tion of the sample complexity should be based on the actual data

distributions and not agnostically obtained (an assumption that

data distribution is i.i.d.). Thus, the SVR yields different prediction

results and consequently, it cannot reach its maximum capacity

(a) DC1 (b) DC2 (c) DC3 (d) DC4 (e) DC5

Figure 7: Offloading distribution with different dataset configurations

(a) SVR training time
(b) R2 data fitness and NRMSE er-
ror accuracy of SVR

Figure 8: SVR empirical measurements

measured as the VC dimension. While SVR is overall well suited for

our problem, it is not a robust algorithm when an excessive amount

of outliers are present in the data [17] as some R2 score result does

not even cross 50% of the data fitness in Figure 8b.

5.3 Markov Decision Process Complexity
Analysis

The MDP control offloading algorithm has a computational com-

plexity of 𝑂 (|𝑆 | ∗ |𝐴|) per task offloading. The computational com-

plexity does not reflect the complexity of the model-checking algo-

rithm (VIA or PIA). Since the MDP algorithm is a computationally

expensive operation for mobile devices, we alternatively propose

placing the MDP algorithm on a remote dedicated server to pro-

duce the offloading decision policy. The remote server computes

the offloading decision policy based on the MDP model information

from the mobile device and returns the offloading decision policy

in the matrix form. If the user frequently consumes the same appli-

cations and remote infrastructure resource does not change during

runtime, then different offloading decision policies can be cached

on the mobile device. In the case of the intermittent or failed con-

nection between the mobile and the remote server, a mobile device

detaches from the server and initiates the MDP algorithm with the

last stored MDP model information. It is possible and sufficient

since MDP exhibits the so-called Markov Property where the future

states depend only on the present state, not the sequence of states

that preceded it. When a remote server is back online again, then

the MDP algorithm on the mobile device switches off and forwards

the current model information to continue the MDP execution on

the remote server.

6 RELATEDWORK
The offloading concept is considered to be a viable solution to

tackle and overcome the hardware limitations of mobile devices

and accelerate the application response time. Relevant offloading

frameworks that appear in the Mobile Cloud Computing (MCC)

literatue is summarized in [3]. The frameworks are mostly con-

cerned with the optimization objectives such as mobile device or

infrastructure energy efficiency, simplifying code development of

offloading applications, and reducing workloads but without con-

sidering offloading failures. Similar frameworks developments also

appear in the Mobile Edge Computing (MEC) literature [22] where

performance utilities as execution delay and energy consumption

are minimized separately or jointly. The same narrative followed

in the Edge Computing field where offloading frameworks em-

ploy multi-objective optimization algorithms [13, 14] to optimize

application response time, mobile device battery lifetime, users’

cost, and providers’ profit. No offloading failures are considered

in their model. Researchers that considered offloading failures in

the offloading systems used M/M/1 queue model [36], checkpoint-

ing mechanism [24], local re-execution and timeout mechanism

[35] and recovery mechanisms [25]. All of them are using reactive

maintenance approaches and not adapted for the Edge offloading.

Applying discrete stochastic optimization algorithms such as

MDP in the offloading optimization is not unprecedented. The work

presented in [31] modeled the Mobile Cloud offloading control pro-

cess as an MDP with considering the stochastic wireless channels

between the Cloud and the mobile device. However, it does not

consider offloading failures. A similar approach is applied to Edge

Computing by [5] but with the same aforementioned limitation.

[38] applied the MDP to optimize the offloading by considering

offloading failures introduced by the intermittent connections be-

tween the Cloudlets and the mobile device. This solution is not

adapted for Edge Computing settings and considers only link fail-

ures. Our previous work [39] did consider offloading failures in

Edge offloading process by applying the MDP approach but based

on a simpler and more general bathtub reliability model that is

hardly replicated in practice. Researchers in [8] employed Bayesian

Networks to estimate the future availability of virtual machines

on Edge data centers to minimize Service Level Objective viola-

tions. However, this work is not adapted for offloading and QoS

parameters are channeled through availability objective. There are

also another ML approaches applied to handle reliability issues in

the distributed computing system such as applying artificial neural

network [37] and support vector machine [23] but none of them is

adapted for Edge Computing and offloading settings. In this work,

we ensure this adaptation by MDP and SVR algorithms to handle

nondeterministic and stochastic offloading control process, com-

bined with offloading site availability prediction to boost system

performance and reliability.

7 CONCLUSION AND FUTUREWORK
Proposed Edge offloading framework is based on the MDP for-

mal framework where the offloading sites were represented as

states, offloading decisions as actions, offloading site availability as

transition probability, and application response time and energy

consumption as reward functions. The offloading site availability

is computed via the SVR algorithm based on the failure trace logs

from the local sites and forwarded it to the MDP control algorithm

that computes the offloading decision policy. The mobile applica-

tions are modeled as DAGs, fragmented into smaller tasks that

are offloaded on the remote offloading site, instead of the entire

application. The evaluation is made in a simulation environment

due to a lack of Edge equipment. The failure traces originate from

the LANL site for an HPC system but can be reused in the Edge

Computing environment due to shared characteristics. The mobile

applications are sampled from the LiveLab application usage traces.

The MDP-SVR framework shows improved results compared with

other baseline offloading algorithms regarding overall performance

and offloading reliability. This can give potential and be an inspira-

tion to the continuation of developing and researching new Edge

offloading solutions that take into account the reliability of the

system to mitigate failures. As future work, we will focus on repli-

cation strategies in the Edge Computing environment for efficient

and resilient resource provisioning.

ACKNOWLEDGEMENTS
This work is funded through the Rucon project (Runtime Control

in Multi Clouds), FWF Y 904 START-Programm 2015.

REFERENCES
[1] [n.d.]. Network Heartbeat Configuration. https://www.aerospike.com/docs/

operations/configure/network/heartbeat/. Accessed: 2020-09-02.

[2] Abdiansah Abdiansah and Retantyo Wardoyo. 2015. Time complexity analysis of

support vector machines (SVM) in LibSVM. International journal computer and
application 128, 3 (2015), 28–34.

[3] Khadija Akherfi, Micheal Gerndt, and Hamid Harroud. 2018. Mobile cloud

computing for computation offloading. Applied Comp. and Inf. 14, 1 (2018), 1–16.
[4] Khalid Alasmari, R.C. Green, and Mansoor Alam. 2018. Mobile Edge Offloading

Using Markov Decision Processes. 80–90. https://doi.org/10.1007/978-3-319-

94340-4_6

[5] Khalid R Alasmari, Robert C Green, and Mansoor Alam. 2018. Mobile edge

offloading using MDP. In Int’l. Conf. on Edge Computing. Springer, 80–90.
[6] Naomi Alpern. 2009. Eleventh Hour Network+: Exam N10-004 Study Guide. Syn-

gress.

[7] Zeeshan Amin, Harshpreet Singh, and Nisha Sethi. 2015. Review on fault toler-

ance techniques in cloud computing. International Journal of Computer Applica-
tions 116, 18 (2015).

[8] Atakan Aral and Ivona Brandic. 2017. Quality of service channelling for la-

tency sensitive edge applications. In 2017 IEEE International Conference on Edge

Computing (EDGE). IEEE, 166–173.
[9] Christopher JC Burges. 1998. A tutorial on support vector machines for pattern

recognition. Data mining and knowledge discovery 2, 2 (1998), 121–167.

[10] Lijuan Cao and Qingming Gu. 2002. Dynamic support vector machines for non-

stationary time series forecasting. Intelligent Data Analysis 6, 1 (2002), 67–83.
[11] Vladimir Cherkassky and Yunqian Ma. 2004. Practical selection of SVM param-

eters and noise estimation for SVM regression. Neural networks 17, 1 (2004),

113–126.

[12] Márcio das Chagas Moura, Enrico Zio, Isis Didier Lins, and Enrique Droguett.

2011. Failure and reliability prediction by support vector machines regression of

time series data. Reliability Engineering & System Safety 96, 11 (2011), 1527–1534.

[13] Vincenzo De Maio and Ivona Brandic. 2018. First hop mobile offloading of dag

computations. In IEEE/ACM Int’l. Symp. on Cluster, Cloud and Grid Comp. 83–92.
[14] Vincenzo De Maio and Ivona Brandic. 2019. Multi-Objective Mobile Edge Provi-

sioning in Small Cell Clouds. In ACM/SPEC Int’l. Conf. on Perf. Eng. 127–138.
[15] Mark DeVirgilio, W David Pan, et al. 2013. Internet delay statistics: Measuring

internet feel using a dichotomous hurst parameter. In IEEE Southeastcon. 1–6.
[16] David Haussler. 1990. Probably approximately correct learning. University of

California, Santa Cruz, Computer Research Laboratory.

[17] Josh Hoak. 2010. The Effects of Outliers on Support Vector Machines. Portland
State University (2010).

[18] Cong Jin and Shu-Wei Jin. 2014. Software reliability prediction model based on

support vector regression with improved estimation of distribution algorithms.

Applied Soft Computing 15 (2014), 113–120.

[19] Karthik Kumar and Yung-Hsiang Lu. 2010. Cloud computing for mobile users:

Can offloading computation save energy? Computer 4 (2010), 51–56.
[20] Nicholas Littlestone. 1990. Mistake bounds and logarithmic linear-threshold

learning algorithms. (1990).

[21] Nick Littlestone,Manfred KWarmuth, et al. 1989. The weightedmajority algorithm.

University of California, Santa Cruz, Computer Research Laboratory.

[22] Pavel Mach and Zdenek Becvar. 2017. Mobile edge computing: A survey on ar-

chitecture and computation offloading. IEEE Communications Surveys & Tutorials
19, 3 (2017), 1628–1656.

[23] Bashir Mohammed, Irfan Awan, Hassan Ugail, and Muhammad Younas. 2019.

Failure prediction using machine learning in a virtualised HPC system and

application. Cluster Computing 22, 2 (2019), 471–485.

[24] Shumao Ou, Yumin Wu, Kun Yang, and Bosheng Zhou. 2008. Performance

analysis of fault-tolerant offloading systems for pervasive services in mobile

wireless environments. In IEEE Int’l. Conf. on Communications. 1856–1860.
[25] Dimas Satria, Daihee Park, and Minho Jo. 2017. Recovery for overloaded mobile

edge computing. Future Generation Computer Systems 70 (2017), 138–147.
[26] Bianca Schroeder and Garth A Gibson. 2009. A large-scale study of failures

in high-performance computing systems. IEEE transactions on Dependable and
Secure Computing 7, 4 (2009), 337–350.

[27] Clayton Shepard, Ahmad Rahmati, Chad Tossell, Lin Zhong, and Phillip Kortum.

2011. LiveLab: measuring wireless networks and smartphone users in the field.

ACM SIGMETRICS Performance Evaluation Review 38, 3 (2011), 15–20.

[28] Anthony M Smith. 1993. Reliability-centered maintenance. McGraw-Hill New

York.

[29] Alex J Smola and Bernhard Schölkopf. 1998. Learning with kernels. Vol. 4. Citeseer.
[30] Yongmin Tan, Hiep Nguyen, Zhiming Shen, Xiaohui Gu, Chitra Venkatramani,

and Deepak Rajan. 2012. Prepare: Predictive performance anomaly prevention

for virtualized cloud systems. In IEEE 32nd International Conference on Distributed
Computing Systems. IEEE, 285–294.

[31] Mati B Terefe, Heezin Lee, et al. 2016. Energy-efficient multisite offloading policy

using MDP for MCC. Pervasive and Mobile Computing 27 (2016), 75–89.

[32] Vladimir Vapnik. 2013. The nature of statistical learning theory. Springer science
& business media.

[33] Vladimir Vapnik, Esther Levin, and Yann Le Cun. 1994. Measuring the VC-

dimension of a learning machine. Neural computation 6, 5 (1994), 851–876.

[34] Vladimir N Vapnik. 1999. An overview of statistical learning theory. IEEE
transactions on neural networks 10, 5 (1999), 988–999.

[35] Qiushi Wang, Huaming Wu, and Katinka Wolter. 2013. Model-based perfor-

mance analysis of local re-execution scheme in offloading system. In IEEE/IFIP
International Conference on Dependable Systems and Networks. 1–6.

[36] Huaming Wu. 2018. Performance modeling of delayed offloading in mobile

wireless environments with failures. IEEE Communications Letters 22, 11 (2018),
2334–2337.

[37] Kai Xu, Min Xie, Loon Ching Tang, and SL Ho. 2003. Application of neural

networks in forecasting engine systems reliability. Applied Soft Computing 2, 4

(2003), 255–268.

[38] Yang Zhang, Dusit Niyato, and Ping Wang. 2015. Offloading in mobile cloudlet

systems with intermittent connectivity. IEEE Transactions on Mobile Computing
14, 12 (2015), 2516–2529.

[39] Josip Zilic, Atakan Aral, and Ivona Brandic. 2019. EFPO: Energy Efficient and Fail-

ure Predictive Edge Offloading. In Proceedings of the 12th IEEE/ACM International
Conference on Utility and Cloud Computing. 165–175.

https://www.aerospike.com/docs/operations/configure/network/heartbeat/
https://www.aerospike.com/docs/operations/configure/network/heartbeat/
https://doi.org/10.1007/978-3-319-94340-4_6
https://doi.org/10.1007/978-3-319-94340-4_6

	Abstract
	1 Introduction
	2 Background
	2.1 Mobile Applications and Edge Offloading
	2.2 Support Vector Regression
	2.3 Markov Decision Process
	2.4 Learning Complexity Analysis

	3 MDP-SVR Offloading Framework
	3.1 System Architecture and MDP model
	3.2 SVR Modelling
	3.3 Offloading Site Availability Model
	3.4 Edge Offloading Model
	3.5 Response Time Model
	3.6 Energy Consumption Model
	3.7 Failure Detection Model
	3.8 MDP-SVR Edge Offloading Algorithm

	4 Evaluation
	4.1 Experimental Setup
	4.2 Simulation Results

	5 Learning Complexity Analysis
	5.1 SVR PAC Analysis
	5.2 Empirical Results of SVR Learning Complexity Analysis
	5.3 Markov Decision Process Complexity Analysis

	6 Related Work
	7 Conclusion and Future Work
	References

