
TAROT: Spatio-Temporal Function Placement for
Serverless Smart City Applications

Vincenzo De Maio∗, David Bermbach†, Ivona Brandic∗
∗Institute of Information Systems Engineering, Vienna University of Technology, Vienna, Austria, {vincenzo,ivona}@ec.tuwien.ac.at
†TU Berlin & Einstein Center Digital Future, Mobile Cloud Computing Research Group, Berlin, Germany, db@mcc.tu-berlin.de

Abstract—Emerging smart city applications (i.e., traffic man-
agement, smart tourism) have to (i) process data coming from
different IoT devices and (ii) deliver results of data processing
to various user devices (e.g., smart vehicles or smartphone)
while considering applications’ latency constraints. Serverless
edge computing has proven to be very effective for latency-aware
processing of IoT data, since it allows application developers
to define data processing logic in terms of functions which
react to data events. However, data processing functions should
be dynamically placed and migrated while considering IoT
data sources’ location and user devices’ mobility to minimize
end-to-end latency. Unfortunately, current serverless computing
solutions do not support mobility-aware placement of functions.

In this paper, we propose dynamic function placement based on
user devices’ mobility to address latency requirements of smart
city applications. We consider serverless smart city applications,
since this computational model allows to model application as a
function execution in response to specific events, which makes
it suitable for event-driven applications typical of smart city
and IoT. First, we identify the parameters affecting end-to-end
latency of serverless smart cities’ applications. Then, based on our
findings, we design TAROT, a latency-aware function placement
method based on data-driven mobility predictions. Results show
improvements up to 46% for average end-to-end latency in
comparison to state-of-the-art solutions.

I. INTRODUCTION

Smart city applications (e.g., traffic safety or smart tourism)
process data from IoT devices (e.g., traffic lights, closed-circuit
cameras, smart glasses) under strict latency constraints and
distribute results to mobile end-user devices (e.g., vehicle on-
board units or smartphones). While a single sensor value may
be small in size, high sampling rates and the vast number of
sensors lead to significant data volumes, requiring the use of
edge resources [1]. Considering mobile user devices’ resource
limitations [2], [3], processing IoT data on the Edge (i) reduces
resource utilization on user devices and (ii) addresses the
latency requirements of smart city applications.

As an execution environment for similar applications, pre-
vious work, e.g., [4]–[7], has proposed to follow the serverless
paradigm in which application logic is defined as a function
execution triggered by specific events. As serverless functions
are short-running and stateless, they can be allocated as needed
and moved between cloud and edge nodes to adapt to workload
changes and application requirements.

An open issue is then the question of when and where
to allocate which function. This placement decision should
consider application latency, as many smart cities applications

have near real-time requirements, but also resource limitations
of mobile user devices. Also, function placement should be
dynamic in order to adapt to varying resource demand and
user mobility. Existing work [7]–[9] either do not consider
mobility or applications’ latency constraints or do not target
smart city applications.

This paper makes the following contributions: (i) we study
execution of serverless smart city application as a queuing
system, identifying the parameters affecting latency, (ii) we
develop TAROT, a data-driven mobility-aware dynamic func-
tion placement approach considering device mobility and (iii)
design a small-scale prototype of target smart city applications
and (iv) develop a simulation of a large-scale smart city
infrastructure to evaluate TAROT approach. Simulation is
designed based on data collected during execution of the
small-scale prototype.

We assume that TAROT is implemented inside a compre-
hensive serverless computing framework offering (i) dynamic
function placement and (ii) data distribution for raw IoT data
and processing results. The main goal of TAROT is to perform
mobility-aware dynamic function placement on a heteroge-
neous Edge/Cloud architecture satisfying applications’ latency
constraints for (i) processing data coming from different IoT
sources and (ii) distributing results of processing to different
mobile devices. We focus on traffic safety and smart tourism
scenarios, as examples of latency-constrained smart city appli-
cation deployed on a heterogeneous Edge/Cloud infrastructure.
We assume a publish-subscribe architecture to distribute IoT
data, as typical in many commercial IoT platforms. We con-
sider serverless functions combined in workflows modeling
different types of applications.

The paper is structured as follows: first, we describe use
cases and foundations (Section II). Next, we analyze data
distribution and processing in serverless edge computing as
a queueing theory model, to identify parameters that most
affect latency of target applications (Section III) and describe
TAROT, a mobility-based approach to function placement
(Section IV). Afterwards, we describe our experimental setup,
both for small-scale deployment and large scale simulation
(Section V), before presenting our results (Section VI). Results
show improvements in average end-to-end latency (up to 46%)
over existing solutions. We discuss related work (Section VII),
then conclude the paper in Section VIII.

II. BACKGROUND

A. Motivating Use Cases

2. Data
collection

2. Data
collection

3. Data
processing

4. Critical situation
detected

5. Send alert

3. Data
processing

CAM 2

2. Data
collection

CAM 1

CAM 3

USER
VEHICLE

BUS
STOP

1. Subscribe

Fig. 1: InTraSafEd5G Use Case.

a) InTraSafEd5G: The InTraSafEd5G project [10], led
by our research group at Vienna University of Technology,
sends alerts about critical situations happening in a driver’s
blind spot to improve traffic safety. Figure 1 shows an example
with a car approaching an intersection (trajectories marked in
red). In Step 1, vehicles subscribes to safety notifications for
the intersection, e.g., based on geofences [11]. In parallel,
data collected by IoT devices (Step 2) is processed at the
edge to identify critical situations, e.g., [12] (Step 3). If data
processing identifies a critical situation (in this case, a cyclist
hidden from the driver by the bus), it sends this alert to the
network (Step 4) which delivers it to all subscribers (Step 5).

Fig. 2: MobiAR Use Case.

b) MobiAR: MobiAR [13] is a mobile augmented reality
application using object detection on data coming from the
user device’ (UD) camera to recognize different points-of-
interest (PoI) in a city and download information and mul-
timedia contents related to it. The whole application flow
is described in Figure 2. In step (1), the user points at
any direction with UD’s camera. Afterwards, in step (2),
video streaming data are processed locally, while in step (3),

Fig. 3: Overview of Serverless Edge Computing.

according to object recognition’s results, it retrieves data and
multimedia (e.g. videos, pictures, documents) associated to the
recognized PoI from the networks. Finally, in step (4) MobiAR
visualizes the video captured by the camera, augmented with
information correlated to the point of interest.

We see that in typical smart city applications, data from a
set of different sources need to be collected, processed, and
delivered to the UD under strict latency constraints. For each
of these steps, different challenges need to be considered: (i)
subscriptions need to be updated based on the UD’s position;
(ii) data objects are heterogeneous in size and frequency of
updates; (iii) processing tasks differ in computational require-
ments, longevity, and priority; (iv) connections are unreliable
due to the limited resources of IoT devices and mobility
of UD; (v) applications have different latency constraints.
Moreover, these challenges need to be addressed at each
intersection (for traffic safety) and at each PoI (for smart
tourism). Considering the distribution of traffic lights in urban
areas, e.g., in the city of Vienna [14], dynamically placing the
data processing logic of InTraSafEd5G and MobiAR is crucial
for low latency data processing. Existing approaches, however,
focus on content caching [15] or multicast routing [16] and do
not consider mobility to improve function placement. We aim
to close this gap by providing a latency-aware data distribution
and processing considering UDs’ mobility.

B. Serverless Edge Computing

Serverless computing, also known as Function-as-a-Service
(FaaS), is an event-driven compute model where application
logic is defined by functions [6]. This approach has been
shown to be very effective in the IoT context. Currently, there
are several FaaS platforms that can also be used at the edge,
e.g., Lean OpenWhisk or tinyFaaS [6]. There are, however,
some limitations in today’s serverless IoT processing:
Function execution: Functions are invoked per event with
limited execution time and resources [17]. It may be difficult
for developers to predict execution time prior to deployment.
Function placement: In state-of-the-art FaaS frameworks, data
is moved to the function, while the other way around would be
more efficient in most cases [18]. While FaaS platforms do not
support this yet, we assume for this paper that functions can
be migrated to data sources or to subscribers as needed [4].

To address the aforementioned challenges, we assume a
generic FaaS framework that (i) relies on serverless edge

CLOUD
DATACENTER

EDGE NODES

NETWORK

SUBSCRIBER

2. PLACEMENT
ALGORITHM

Execution
Data

Subscribers
Data

SUBSCRIPTION
REGISTRY

INFRASTRUCTURE
DATA

WORKFLOW

QoS/COST
CONSTRAINTS

5. Recomputing

3. Placement

1. Submission

Infrastructure monitoring

4. CONSTRAINTS
EVALUATION

4. MOBILITY
EVALUATION

Fig. 4: Overview of the Function Placement Service.

computing for data processing, (ii) ensures in-time delivery
of data objects to the function instances processing the data,
and (iii) delivers processing results to all subscribed UDs.

Figure 3 gives an overview of QuickFaaS: In Step 1,
a serverless workflow is registered to the infrastructure. In
Step 2, data coming from IoT devices are published to the
network, while users subscribe to their topic(s) of interest.
In Step 3, the Function Placement Service (FPS) computes
a placement for each workflow function. Once the workflow
placement is performed, in Step 4, raw data are processed on
the computational infrastructure, and, in Step 5, published to
the infrastructure according to subscriptions performed in Step
2. Finally, in Step 6, processing results are delivered to the
subscribers. Data exchange between IoT devices, functions,
and UDs is handled by a data distribution service implemented
through a pub/sub service or a system such as FBase [19].

The FPS is described in Figure 4. We assume that informa-
tion about available Cloud/Edge nodes is constantly upgraded
in the background. First, ready functions are fetched from the
FaaS workflow to perform selection of the target. Afterwards,
subscriber nodes collect information about each candidate (i.e.,
network and CPU resources available, future position of UDs)
by invoking monitoring services. Based on collected data,
each node selects its favorite target and vote for it. Finally, a
candidate is selected as target for deploying the functions. In
this paper, we describe TAROT as function placement method.

For IoT data distribution, there are protocols such as CoA-
Por MQTTand service offerings such as Amazon IoT (https://
aws.amazon.com/iot/) or Google Cloud Pub/Sub (https://cloud.
google.com/pubsub/docs/overview). Most of these follow the
pub/sub paradigm since the push delivery of data only to
interested parties is a perfect fit for many IoT applications [20].
Consequently, we will assume pub/sub-based data distribution.

III. SERVERLESS EDGE PROCESSING ANALYSIS

Data coming from a publisher node p ∈ P , where P is the
set of publisher nodes, is streamed as a set of data objects [21].
Data objects are processed by one or more compute nodes

Fig. 5: Serverless Computing Queuing System.

(cloud or edge) c ∈ C, being C the set of compute nodes.
Processing logic is described by serverless workflows W , com-
posed of several interdependent functions modeling different
data processing stages. Serverless workflows are modeled as
directed acyclic graphs (DAGs) where each node represents a
function and each edge models precedence relations between
functions, i.e., a function transition. Once processing is com-
pleted, data objects are delivered to all subscribers s ∈ S
subscribed to the results of W .

Edge nodes are deployed following the smart traffic lights
distribution in [14]. Data objects share the infrastructure’s
network and computational resources which is modeled as the
queuing system in Figure 5. Based on the queuing model, we
define the Average workflow latency T as the average time
for each data object to be uploaded, processed, and delivered.
Table I summarizes our model notation.

In Figure 5, we define the average workflow latency T as
the sum of three components: the upload time TU , i.e., the
latency for uploading data objects from publishers to compute
nodes, the processing time TP , i.e., the latency for processing
data objects in compute nodes, and the download time TD,
i.e., the latency for downloading processed data objects from
compute nodes to subscribers.

1) Upload Time: Each publisher forwards data objects of
different sizes and number in a specific time interval. We
assume that each publisher pi ∈ P produces data objects ac-
cording to a Poisson Point Process with an average rate λ(pi).
The average size in bytes for each data object forwarded by
pi is modeled by a random exponential variable with average
ℓ(pi). Transmission of data objects is done via the network
infrastructure, subject to capacity limits on the communication
channel between two nodes. Let N def

= P∪C∪S . The capacity
of the channel between ni, nj ∈ N , r(ni, nj) is defined by
the network bandwidth available in the channel between ni
and nj , r(ni, nj). Average upload latency from p to c is

µpc =
λ(p)ℓ(p)

r(p, c)
τp,c, (1)

where τp,c is a binary variable which is set to 1 if p transmits
data to c, 0 otherwise. We assume that τp,c = 1 for all c in

the cell of p. Let A(c) be the set of p ∈ P associated to c.
A(c) depends on nodes’ n ∈ P ∪ S coordinates, coords(n).
We define the average network utilization of c, U(c), as

U(c) =
∑

p∈A(c)

µpc. (2)

Communication channels between publishers and compute
nodes are shared in a round-robin fashion [22]. Since ℓ(p)
follows an exponential distribution and the data rate is given,
the service time for each p (i.e., the time required to deliver
each data entry) follows an exponential distribution [23]. We
then define the average transfer time from p to c as

tpc =
ℓ(p)

r(p, c)
. (3)

As a result, the communication between publishers and com-
pute nodes realizes an M/M/1 processor sharing queue, which
according to [22] is a feasible model for emulating practical
data transmission since (i) each pair (p, c) has different r(p, c)
according to the network capacity and geographical distance
between nodes and (ii) resources of each c are shared fairly
across publishers. The service time of the M/M/1 queue is
equal to the transfer time tpc. For analytical tractability, we
assume that the system is stable, i.e., that U(c) < 1 ∀c ∈ C,
namely, that all publishers assigned to c do not overload the
communication channel of c. The average time for sending
data objects from p to c, µpc, is the sum of the delivery and the
waiting time for each data object. The delivery time td(p, c)
depends on the r(p, c) and U(c) since the channel is shared
among all p ∈ A(c) and is defined as

td(p, c) =
ℓ(p)

r(p, c)(1− U(c))
. (4)

Given the M/M/1 processor sharing queue at each compute
node, the average waiting time for data objects generated by
p is equal to the difference between delivery and service time,
which is equal to tpc. Therefore, the waiting time wpc from p
to compute node c is equal to

wpc = td(p, c)− tpc =
U(c)ℓ(p)

r(p, c)(1− U(c))
. (5)

We then define the average upload latency for each p ∈ P as

T̂U (p, c) = wpc + td(p, c) =
ℓ(p)(U(c) + 1)

r(p, c)(1− U(c))
. (6)

From the definition of TU follows

TU =
∑
c∈C

∑
p∈Ap(c)

T̂U (p, c). (7)

2) Compute Latency: Processing of data objects is achieved
by executing user-defined FaaS workflows on compute nodes.
Since workflows are submitted to the infrastructure at deploy-
time, we assume their structure is already known to the
placement service. Therefore, from now on, we use the
term “workflow” to identify both the DAG and its seri-
alized version, obtained through a topological sorting of

workflow W . We define a serialized serverless workflow
Wi = ⟨Fi, Ti, topicini , topicouti ⟩, where Fi are Wi’s functions,
Ti are the transitions between functions, topicini is the list of
topics accepted by workflow Wi, and topicouti the topics under
which Wi results are published.

We study the processing of serverless workflows as a
deterministic queuing network such that (i) for each function
fj ∈ Fi, j ∈ [0, |Fi|] we have a queue and (ii) for each
transition between fj , fk we have an edge connecting the
two queues of fj and fk. For all Wi, we assume that
the computational load (i.e., computing size) of applying a
function f ∈ Fi to data objects forwarded from n, MI(f, n),
defined in millions of instructions (MI), follows an exponential
distribution [22]. Functions must be deployed on a compute
node c ∈ C to be executed. The actual deployment of each
function f of Wi is determined by the placement vector Πi,
such that Πi,j = c, with j ∈ [0, |Fi|] if fj is placed on node
c ∈ C. Since computational capacity MIPS(c) of each c ∈ C,
defined in millions of instructions per seconds (MIPS), is fixed,
we define the service time ŝ for function fj on data objects
from node n as

ŝ(fj) =
MI(fj , n)

MIPS(Πi,j)
. (8)

The average processing time of data objects coming from a
node n applying function f on node c is defined as

p̂(fi, nj) =
λ(nj)MI(fi)

MIPS(nj)
ϕi,j . (9)

Where x̂ij is a binary variable that is equal to 1 if fj is
deployed on nj . Values of x̂ij depend on the placement
vector Πi. Let ψ(c) be the set of functions deployed on c.
Computational use of node c, Uc(c), with ci ∈ C, is then

Uc(c) =
∑

f∈ψ(c)

p̂(f, c). (10)

Processing of serverless workflows can be modeled as a
network of M/M/1 queues, as follows from the Burke theorem.
From the properties of M/M/1 queues, we define the waiting
time for function f on node c, wcf,c as

wcf,c =
Uc(c)MI(f, c)

MIPS(c)(1− Uc(c))
(11)

and the computing time for function f on node c as

tc(f, c) =
MI(f)

MIPS(c)(1− Uc(c))
. (12)

The average processing latency for f on node c is then

P̂ (f, c) = wcf,c + tc(f, c). (13)

As a consequence, the average processing latency Tp is:

Tp =
∑

j∈[0,|Fi|]

P̂ (fj ,Πi,j). (14)

3) Download Time: Results of workflow Wi are then
transferred to all subscribers registered to topicouti , namely
Θ(S, topicouti). Let c = Π|Fi| and λ(c) = ŝ(fj). We assume
that the size of data objects, which are a result of Wi, ℓ(c),
follows an exponential distribution. The average download
latency for each s ∈ Θ(S, topicouti) is then

T̂D(c, s) = wcs + td(c, s) =
ℓ(c)(U(s) + 1)

r(c, s)(1− U(s))
. (15)

where definitions of wcs, td(c, s) and U(s) follow respectively
from Equations 5, 4, and 2. The average download time is then

TD =
∑

s∈Θ(S,topicout
i)

T̂D(Π|Fi|, s). (16)

Finally, we define the average workflow latency as

T = TU + TP + TD. (17)

We observe that T is influenced mainly by the average data
object size ℓ, the arrival rate for data object λ, the network
channel capacity r and the network and CPU utilization of
each node, respectively U and Uc. Since ℓ, λ and r depend
on the application or infrastructure setup, we focus on the
management of U and Uc to reduce latency.

Symbol Description
N Set of network nodes belonging to serverless infrastructure

P, C,S Sets of publisher, compute and subscriber nodes
Θ(S, t) Set of subscribers subscribed to topic t
Θ(P, t) Set of publishers that publish data objects under topic t
T Average Workflow Latency
TU Average Upload Time
TP Average Processing Time
TD Average Download Time
ℓ(n) Average size of data objects from n ∈ N
λ(n) Arrival rate of data objects from n ∈ N
A(c) Coverage of a node c ∈ C

coords(n) Coordinates of node n
U(c) Network utilization of a node c ∈ C
Uc(c) Computational use of a node c ∈ C

r(ni, nj) Network channel capacity between nodes ni, nj ∈ N
MIPS(c) Computational capacity of node c ∈ C
MI(f) Average computational load for function f
Wi A serialized FaaS workflow
Fi Set of functions in workflow Wi

Ti Set of transitions between the functions of Wi

topicin,out
i Topics to which Wi subscribes/publishes
Πi Placement vector for Wi

Πi,j Placement node for function fj , j ∈ [0, |Fi|]
τi,j 1 if publisher i communicates with compute node j, 0 otherwise
ϕi,j 1 if function i is deployed on compute node j, 0 otherwise
wij Waiting time between nodes ni, nj ∈ N

td(ni, nj) Delivery time between nodes ni, nj ∈ N
µij Average network latency between nodes ni, nj ∈ N

TABLE I: Table of Notation.

IV. TAROT APPROACH

In this section, we describe TAROT (predicTion-based
FAaS woRkflOw placemenT). TAROT components are the
placement service, which performs the placement of functions,
and the prediction service supporting it.

A. FaaS Workflow Execution

In FaaS systems, functions/workflows are deployed on
the target infrastructure and executed on-demand following
a trigger (i.e., incoming data from specific sources). After
invocation, they produce a results and then terminate. Since
they are deployed beforehand, information such as workflow
structure are known before execution. Also, to prevent over-
utilization of resources, each function fk, k ∈ [0, |Fi|] is given
a deadline fdk , which limits the time fk can run. FaaS workflow
execution is described in Algorithm 1.

First, knowing the structure of W allows to pre-compute an
order of execution for functions of W , which is done by the
function fetchFunctions. In lines 4-10, each fk function is
deployed following the order defined by fetchFunctions,
on the target node defined by the placement vector Πi, Πi,k.
Since workflows are executed on-demand, computing ideal
placement each time a function is invoked might lead to
violation of workflows’ constraints. Therefore, Πi is computed
at regular time intervals, i.e., each uT seconds. Since we know
in advance each function deadline fdk , we start computation
of placement for next function fk+1 if we see that execution
of fk could exceed uT . This is modeled by the condition in
line 6, where we consider also the coldStart time, i.e., the
time required to allocate function on Πi,k.

Algorithm 1 FaaS Workflow Execution
1: function WF− EXEC(C,Wi,Πi, uT)
2: Fi ← fetchFunctions(Wi)
3: λ(p), ℓ(p)← getInfo(Wi)
4: for fk ∈ Fi do
5: ft ← time() + fd

i + coldStart
6: if ft > uT then
7: end if
8: fork(TAROT− PLACEMENT(C, k + 1,Wi, uT, λ(p), ℓ(p)))
9: deploy(fk,Πi,k)

10: end for
11: end function

B. Placement Service

Finding Πi requires to identify, for each function fi ∈ Fi, a
node c ∈ C that allows deployment of fi in terms of resources’
availability and minimization of T , which requires to iterate
over the whole set of compute nodes C. T depends on U
and Uc depend on the user subscriptions, which depend on
user locations [11]. Therefore, predicting future UD’s locations
allows to predict future users’ subscriptions and consequently
future U and Uc, which affect future latency T f .

Placement service is described by Algorithm 2. After
initialization of T f , we extract the sorted functions in W
using fetchFunctions. In lines 7-14, TAROT-PREDICT
(Algorithm 3) is invoked to identify the node minimizing T
for function f , T f , until time time()+uT. Computation of the
new placement starts from the i-th function, where i is given
as input during the workflow execution. Goal of placement
service is to ensure that Πi,k minimizes constraints violation
during the time window. To this end, placement service relies
on the prediction service, TAROT-PREDICT, to predict future
average latency for single function f , T f . First, algorithm

checks if node c has enough resources to execute function
fk (line 8). Then, if the allocation on node c reduces Tf , Tf
value is updated (line 10) and placement of fk is updated in
line 11. Finally, Πi is updated for all functions in W .

Algorithm 2 PLACEMENT algorithm.
1: function TAROT− PLACEMENT(C, func,W, uT, λ(p), ℓ(p))
2: T f ←∞
3: F ← fetchFunctions(W)
4: j ← 0
5: for j < |W | do
6: k ← func
7: for c ∈ C do
8: if isCompatible(fk, c) then
9: if TAROT− PREDICT(c, fk, time()+ uT, λ(p), ℓ(p)) < T f then

10: T f ← TAROT− PREDICT(c, fk, time() + uT, λ(p), ℓ(p))
11: Πi,k ← c
12: end if
13: end if
14: end for
15: j ← j + 1
16: k ← k + 1 MOD |W |
17: end for
18: end function

C. Prediction Service

Typical prediction approaches [24], [25] are based on AI and
require training of complex models, requiring a huge amount
of data, which might be unsuitable for Edge nodes due to
their limited storage and computational capabilities [26]. As a
consequence, we design a prediction service based on Kalman
filters. Kalman filter is a data-driven prediction approach
which estimates the state of a dynamic system starting from
a set of measurements collected from noisy sensors. In our
case, location data are collected through each UD’s GPS
coordinates. The state of each vehicle n at time j is represented
as a vector coords(n, j) = ⟨xjn, yjn, vjx,n, vjy,n⟩T , where xjn
and yjn represent respectively the latitude and longitude of
UD n at time j and vjx,n, vjy,n the velocity on x and y
axis. Kalman filter is composed of two phases: the predict,
where coords(n, j) is estimated based on previous state
coords(n, j − 1). To predict the coords(n, j), we need to
consider motion equation (including acceleration) and the cor-
relation between previous position. State transition is modeled
by state transition matrix F (n, j), F (n, j) matrix is defined

as

1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

. Where ∆t models the measurement

interval. Since velocity of each UD depends on external influ-
ence (i.e., UD accelerates/decelerates), we have to take it into
account to improve accuracy of predictions. To this end, we
use the control matrix B(n, j) and the acceleration vector a⃗j ,

which is defined as

∆t2

2
∆t2

2
1
1

 a⃗j . We assume that acceleration a⃗j

follows a normal distribution with mean µ and standard devia-
tion σ for each coordinate. Correlation between coords(n, j)
and coords(n, j − 1) is defined by the covariance matrix W ,
which defines how variations in each component correlation

between each component of coords(n, j). Since we assume
that variation on x have no influence on y, considering motion

equation we define W (n, j) as

∆t4

4 0 ∆t3

2 0

0 ∆t4

4 0 ∆t3

2
∆t3

2 0 ∆t2 0

0 ∆t3

2 0 ∆t2

σ.

Finally, we want to use real measurements to update our
model. Measurements are defined by the observation matrix
H(n, j) and random measurements noise V (j). We assume
that V (j) is constant and equal to 10 meters, as typical in GPS
sensors. Measurements are updated according to the Kalman
gain K(n, j), which is calculated according to Equation 18.

K(n, j) =W (n, j − 1)HT (n, j)·
· (H(n, j)W (n, j − 1)HT (n, j) + V (j)). (18)

State update equation for each UD n is then defined as

coords(n, j) = coords(n, j − 1)+

+K(z⃗(n, j)−H(n, j)coords(n, j − 1)), (19)

where z⃗(n, j) is the real measurements of n location.
Prediction of T f is described in Algorithm 3. Its input

are target node c, the function fi to be deployed on c and
the temporal horizon of prediction, uT. First, topics to which
function subscribes/publishes are collected in lines 2-5. In the
for loop from line 8-12, Equation 19 is used to predict future
location of publisher/subscribers n ∈ S′∪P ′, starting from the
location at time() until target time. Finally, future average
latency for fi on node c, T f is returned.

Algorithm 3 Prediction of T f .
1: function TAROT− PREDICT(c, fi, target, λ(p), ℓ(p))
2: tin ← topicin(fi)
3: tout ← topicout(fi)
4: S′ ← Θ(S, tin)
5: P ′ ← Θ(P, tout)
6: z⃗ ← getMeasurements(S)
7: for n ∈ S′ ∪ P ′ do
8: for j ∈ [time(), target do
9: coords(n)j ← Equation 19

10: K(n, j)← Equation 18
11: end for
12: end for
13: T f ← Equation 17
14: return T f

15: end function

V. EXPERIMENTAL SETUP

A. Data Collection
To design an accurate simulation, we use data collected on

InTraSafEd5G infrastructure, deployed on two traffic lights at
a crossroad in Vienna. Each node is composed of an RPI V2
camera and a Coral USB TPU, attached to a Raspberry Pi
4B+ as shown in Figure 6a. To execute serverless functions,
we installed OpenFaaS 0.7.3 and Python 3.7.3. Edge nodes are
attached to traffic lights as shown in Figure 6b. Data are used
to simulate a large scale deployment of TAROT on different
areas of Vienna, as it is common in evaluation of large scale
edge systems [27]. The structure of workflows is illustrated in
Figures 7a and 7b together with λ(p), ℓ(p), and MI(f).

(a) InTraSafEd5G Edge Node.

RPI4 +
CAMERA

5G MODEM

(b) Node Deployment.

(a) InTraSafEd5G (IS) Workflow

(b) MobiAR (AR) Workflow

Fig. 7: Target Serverless Workflows.

1) Workflows: The InTraSafEd5G workflow processes
video frames coming from cameras installed at different
crossroads, to detect pedestrians in drivers’ blind spots. First,
cameras upload video frames under specific topics (UPLOAD),
which are then analyzed by an object detection function
(ANALYZE) once the detection model has been loaded
(LOAD_MODEL). Results are then aggregated (AGGREGATE)
and alerts are sent to all UD registered to the topic. During
this workflow execution, UD subscribe to all topics collecting
information about the crossroad closest to the UD.
MobiAR workflow describes a touristic augmented reality

application which shows information about points of interest
(POI) on a UD (i.e., phone, smart glasses). First, image of
the POI is uploaded from UD to the infrastructure (UPLOAD
function), then image metadata are extracted by the EXTRACT
function. Metadata are then processed (PROCESS function)
and data are obtained by an external service (DATA). Finally,
data are delivered to the UD (DOWNLOAD). During this work-
flow execution, UD publish the picture under a topic and then
subscribe to the topic related to POI data.
λ(p) depends on application: for example, each camera

on average forwards 4 key frames out of 25 per second to
save network bandwidth, therefore λ(p) = 4 for AR. For
InTraSafEd5G, λ(p) = 8 because workflows aggregates data
from at least two cameras. The value of ℓ(p) is based on the
average size of frames collected by each camera. MI(f) value
depends on function execution time, that is obtained through
code instrumentation and averaged over 100 executions.

2) Network Measurements: We collect latency and band-
width measurements on the InTraSafEd5G infrastructure for
TAROT simulation. Since network communication in In-
TraSafEd5G relies on the MQTT protocol, as is common
in IoT [28], we collect measurements of MQTT latency
through a self-designed android application. For bandwidth
measurements, we use iperf. We simulate Edge and Cloud
deploying MQTT broker and iperf server in different locations,
as in [10]. We collect data on 3G, 4G and 5G network.

B. Simulation Setup

After evaluating different simulators, i.e., iFogSim [29] and
EdgeCloudSim [30], we decided to use SLEIPNIR [31],
which provides validated models for cloud/edge infrastructure.

1) Compute Nodes: The MIPS(c) value of cloud and edge
nodes as well as other hardware capabilities are selected
to reflect our experiment testbed. Table II shows hardware
specifications. For cloud nodes, we use the same number and

Node type Number CPU MIPS

Cloud 6 64 2500
Edge {36, 100, 144} 4 2000

Publishers {42, 135, 172} ✗ ✗
Subscribers {360, 1000, 1440} ✗ ✗

TABLE II: Configuration of Compute Nodes.

locations of [31], which provides a realistic estimation for this
scenario. Edge nodes are placed on the map for each traffic
light, as in [14].

2) Network Infrastructure: Due to the unreliability of con-
nections in mobile data distribution services [32], we model
connections between nodes using random variables whose
distribution is based on data collected in InTraSafEd5G, as
described in Section V-A2. UD are connected to the infras-
tructure via 3G, 4G, or 5G. We employ Q(t) variable, whose
distribution is summarized in Table III, to determine which
connection is available at time t. Latency and bandwidth
used for a single-hop are summarized in Table III. Bandwidth
corresponds to r(ni, nj) in Table I.

Connection Edge QoS Cloud QoS
Q(t)Latency [ms]Bandwidth [Mbps]Latency [ms]Bandwidth [Mbps]

3G 371.16 24.1 378.7 10.5 0.28
519 1.05 561 1.05 0.04

4G 54.2 52.1 109.8 10.5 0.48
106 48.16 163 21 0.1

5G 45.475 56.2 86.09 48.32 0.09
74 22 105.5 22 0.01

TABLE III: 1-hop Network QoS Distribution.

3) Mobility Simulation: We use mobility traces gener-
ated by the SUMO simulator [33] for subscribers’ move-
ments. SUMO is a state-of-the-art mobility simulator offer-
ing simulation of vehicular and pedestrian traffic on Open-
StreetMap maps. We extract maps of three different areas
of Vienna: HERNALS(H) (11.35 km2), LEOPOLDSTADT(L)
(19.27 km2), and SIMMERING(S) (23.23 km2). Then, SUMO
is used to simulate traffic on the selected areas similar to pub-
lications on Vehicular Ad-Hoc Networks (VANET), e.g., [3].

We collect logs about relative coordinates of each vehicle
moving in the aforementioned areas with a sampling interval
of 1 second. UD movement is simulated by updating their
coordinates according to the logs as simulation advances.

VI. RESULTS

We evaluate TAROT by simulating placement on the areas
described in Section V-B3. Each result is averaged over 1000
iterations. We run experiments on TU Vienna cluster using
Spark v3.0.1 and Java 1.8. Each node features 48 Intel(R)
Xeon(R)E5-2650 v4 2.20GHz cores.

A. Parameter Study

TAROT predictions are influenced by the value of uT, which
determines the temporal horizon over which predictions of T
are performed. In this set of experiments, we evaluate runtime
and T with respect to uT. Comparison is performed with
a ORACLE approach, where instead of TAROT predictions
(described in Algorithm 3) the real SUMO traces are used.

B. Comparative Evaluation

We compare TAROT to other state-of-the-art placement
heuristics, FFDPROD [34] and COSTLESS [35], the state-
of-the-art list-scheduling heuristic PEFT [36], to show that
improvements in T are not related to workflow scheduling,
and the ORACLE approach previously described. We compare
placement solutions obtained by these algorithms on selected
workflows (Figure 7). We vary ℓ(p) between 1kb and 1Mb,
which represent realistic estimations of sizes of expected data
objects. Results are shown, respectively, in Figures 8a for
InTraSafEd5G and in Figures 8c for AR. For comparative
analysis, when increasing ℓ(p), TAROT provides a 46% lower
T in comparison to FFDPROD and 20.6% less in comparison
to the COSTLESS algorithm for InTraSafEd5G (Figure 8a) as
well as up to 25% less for AR (Figures, 8c).

C. Discussion

Results of Section VI-A, described by Figures 8a-8d show
that TAROT is capable to compute a target node in less than
150ms for both workflows, which allows to satisfy latency
constraints of target applications. The difference in execution
time between ORACLE and TAROT is related to the fact
that while ORACLE just performs a lookup in the mobility
traces, while TAROT performs calculation of Equations 19, 18
for a longer time. Concerning uT , selecting a uT = 120s
allows to achieve a solution close to ORACLE (average 8.4%
difference), which is the average time needed by each UD to
move in the range of another Edge node.

Concerning the comparative analysis (Section VI-B), we
can see that TAROT is capable to reduce T up to 46% with
respect to ℓ(p), (Figures 9b-10c). Also, we notice that results
of TAROT are comparable with the ORACLE approach, which
employs the real values from the traces instead of predicted
value. These simulation results show the benefits of TAROT
approach for T and its applicability to IoT data processing.
Moreover, the shortest runtime in comparison to centralized

solutions (i.e., PEFT and COSTLESS) provides a promising
results towards real-world TAROT implementation.

VII. RELATED WORK

Smart city applications and their requirements are described
in [26], [37].

Serverless computing is described in [38]. In [18], different
applications of serverless computing in Cloud are described.
In [17], several issues related to the implementation of server-
less computing on Fog infrastructures are discussed, while
exploitation of serverless features for IoT Cloud applications
has been proposed in [4]. In [28], [39], data distribution for
IoT systems is addressed only for Cloud resources. Benefits
of serverless paradigm for hybrid Edge/Cloud infrastructures
has been discussed in [5], while [6] described development of
tinyFaaS, a serverless framework for Edge/Cloud infrastruc-
tures. The use of edge computing to improve performance of
IoT processing has been proposed, e.g., by [40]. Still in the
context of FaaS architectures, [41] focuses in provisioning and
allocation of functions in Edge/Cloud architectures.

The use of IoT messaging protocols in the fog/edge do-
main is described in [42]. A pub/sub scheme for IoT data
distribution in the context of Software Defined Networks is
presented in [43]. Other works have addressed data distribution
for latency-constrained applications, e.g., [44] in terms of
load balancing and [45] in terms of cost-effectiveness. MQTT-
based Middleware for edge-based IoT applications has been
proposed by [11], [46]. In addition to data delivery, we target
data processing on cloud/edge infrastructure.

The papers [19] describe FBase, a function replication
service for data-intensive fog applications, without considering
latency requirements and UDs’ mobility. In [35], COSTLESS
placement approach for serverless functions is described.
Placement of FaaS workflows is discussed in [47], focusing
mostly on data protection. An auction-based function place-
ment approach to optimize latency and cost is proposed by [7],
without considering FaaS workflows and mobility. Dynamic
placement of functions for mobile serverless applications is
described by [8], but focuses more on security issues.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we proposed the TAROT approach for latency-
aware function placement in serverless edge computing sys-
tems. We evaluated TAROT in a simulated urban deployment
and compared it with other state-of-the-art algorithms. Results
show that TAROT provides latency improvements up to 46%
compared to alternatives.

In future work, we plan to develop TAROT approach in
combination with hybrid smart contracts, to address privacy
issues typical of IoT scenario. Moreover, we plan to evaluate
its performance on existing serverless computing frameworks,
i.e., tinyFaaS and OpenWhisk. Finally, we will investigate data
privacy provided by TAROT, which is of particular interest due
to the use of video footages and UD’s GPS.

500 1,000

2

2.2

2.4

2.6

2.8

uT

T

TAROT
ORACLE

(a) W=IS, T w.r.t. uT .

500 1,000
0

50

100

150

uT

E
xe

cu
tio

n
tim

e
(m

s) TAROT
ORACLE

(b) W=IS, RT w.r.t. uT .

500 1,000

3

3.5

uT

T

TAROT
ORACLE

(c) W=AR, T w.r.t. uT .

500 1,000

20

40

60

uT

E
xe

cu
tio

n
tim

e
(m

s) TAROT
ORACLE

(d) W=AR, RT w.r.t. uT .

Fig. 8: Parameter Studio, W = {IR, AR}, uT = [120, 1200]s, M = H .

0 0.5 1

·106

50

100

ℓ(p)

T

TAROT
FFDPROD
COSTLESS
ORACLE

PEFT

(a) T w.r.t. ℓ(p), M = H .

0 0.5 1

·106

50

100

150

ℓ(p)

T
TAROT

FFDPROD
COSTLESS
ORACLE

PEFT

(b) T w.r.t. ℓ(p), M = L

0 0.5 1

·106

50

100

150

ℓ(p)

T

TAROT
FFDPROD
COSTLESS
ORACLE

PEFT

(c) T w.r.t. ℓ(p), M = S.

Fig. 9: Comparative study, W = {IS}, ℓ(p) = [1e3 − 1e6] bytes, M={H,L, S}.

0 0.5 1

·106

0

50

100

150

ℓ(p)

T

TAROT
FFDPROD
COSTLESS
ORACLE

PEFT

(a) T w.r.t. ℓ(p), M=H .

0 0.5 1

·106

0

50

100

150

ℓ(p)

T

TAROT
FFDPROD
COSTLESS
ORACLE

PEFT

(b) T w.r.t. ℓ(p), M=L.

0 0.5 1

·106

50

100

150

ℓ(p)

T
TAROT

FFDPROD
COSTLESS
ORACLE

PEFT

(c) T w.r.t. ℓ(p), M=S.

Fig. 10: Comparative study, W = {AR}, ℓ(p) = [1e3 − 1e6] bytes, M={H,L, S}.

ACKNOWLEDGEMENTS

This work has been partially funded through the Rucon
project (Runtime Control in Multi Clouds), FWF Y 904
START-Programm 2015, the CHIST-ERA grant CHIST-ERA-
19-CES-005, by the Austrian Science Fund (FWF): I 5201-N,
and 5G Use Case Challenge InTraSafEd 5G (Increasing Traffic
Safety with Edge and 5G) funded by the City of Vienna.

REFERENCES

[1] F. Pallas, P. Raschke, and D. Bermbach, “Fog computing as privacy
enabler,” in Internet Computing. IEEE, 2020.

[2] E. B. Smida, S. G. Fantar, and H. Youssef, “Video streaming challenges
over vehicular ad-hoc networks in smart cities,” in 2017 International
Conference on Smart, Monitored and Controlled Cities (SM2C), Feb
2017, pp. 12–16.

[3] V. D. Maio, R. B. Uriarte, and I. Brandic, “Energy and profit-aware
proof-of-stake offloading in blockchain-based vanets,” in Proceedings
of the 12th IEEE/ACM International Conference on Utility and Cloud
Computing, UCC 2019, Auckland, New Zealand, December 2-5, 2019,
K. Johnson, J. Spillner, D. Klusácek, and A. Anjum, Eds. ACM, 2019,
pp. 177–186.

[4] T. Pfandzelter and D. Bermbach, “Iot data processing in the fog:
Functions, streams, or batch processing?” in Proc. of DaMove. IEEE,
2019.

[5] L. Baresi and D. F. Mendonça, “Towards a serverless platform for edge
computing,” in Proc. of ICFC. IEEE, 2019.

[6] T. Pfandzelter and D. Bermbach, “tinyFaaS: A lightweight faas platform
for edge environments,” in Proceedings of the Second IEEE Interna-
tional Conference on Fog Computing (ICFC 2020). IEEE, 2020.

[7] D. Bermbach, S. Maghsudi, J. Hasenburg, and T. Pfandzelter, “To-
wards auction-based function placement in serverless fog platforms,”
in Proceedings of the Second IEEE International Conference on Fog

Computing (ICFC 2020). IEEE, 2020.
[8] A. Bocci, S. Forti, G.-L. Ferrari, and A. Brogi, “Secure faas orchestration

in the fog: how far are we?” Computing, vol. 103, no. 5, pp. 1025–1056,
2021.

[9] D. Pinto, J. P. Dias, and H. Sereno Ferreira, “Dynamic allocation of
serverless functions in iot environments,” in 2018 IEEE 16th Inter-
national Conference on Embedded and Ubiquitous Computing (EUC),
2018, pp. 1–8.

[10] I. Lujic, V. D. Maio, K. Pollhammer, I. Bodrozic, J. Lasic, and I. Brandic,
“Increasing traffic safety with real-time edge analytics and 5g,” in
EdgeSys@EuroSys 2021: 4th International Workshop on Edge Systems,
Analytics and Networking, Online Event, United Kingdom, April 26,
2021, A. Y. Ding and R. Mortier, Eds. ACM, 2021, pp. 19–24.

[11] J. Hasenburg and D. Bermbach, “GeoBroker: Leveraging geo-contexts
for IoT data distribution,” Computer Communications, 2020.

[12] A.-S. Karakaya, J. Hasenburg, and D. Bermbach, “SimRa: Using crowd-
sourcing to identify near miss hotspots in bicycle traffic,” Elsevier
Pervasive and Mobile Computing, 2020.

[13] D. Marimon, C. Sarasua, P. Carrasco, R. Álvarez, J. Montesa,
T. Adamek, I. Romero, M. Ortega, and P. Gascó, “Mobiar: Tourist
experiences through mobile augmented reality,” Information and com-
munication technologies in tourism, 01 2010.

[14] A. Aral, V. De Maio, and I. Brandic, “Ares: Reliable and sustainable
edge provisioning for wireless sensor networks,” IEEE Transactions on
Sustainable Computing, pp. 1–1, 2021.

[15] G. Luo, Q. Yuan, H. Zhou, N. Cheng, Z. Liu, F. Yang, and X. S. Shen,
“Cooperative vehicular content distribution in edge computing assisted
5g-vanet,” China Communications, vol. 15, no. 7, pp. 1–17, 2018.

[16] M. Elhoseny, “Intelligent firefly-based algorithm with levy distribution
(ff-l) for multicast routing in vehicular communications,” Expert Systems
with Applications, vol. 140, p. 112889, 2020.

[17] B. Cheng, J. Fürst, G. Solmaz, and T. Sanada, “Fog function:
Serverless fog computing for data intensive iot services,” CoRR, vol.
abs/1907.08278, 2019.

[18] J. M. Hellerstein, J. Faleiro, J. E. Gonzalez, J. Schleier-Smith,
V. Sreekanti, A. Tumanov, and C. Wu, “Serverless Computing: One
Step Forward, Two Steps Back,” in Proceedings of CIDR, Jan. 2019.

[19] J. Hasenburg, M. Grambow, and D. Bermbach, “Towards A Replication
Service for Data-Intensive Fog Applications,” in Proceedings of the 35th
ACM Symposium on Applied Computing, Posters Track (SAC 2020).
ACM, 2020.

[20] J. Hasenburg, F. Stanek, F. Tschorsch, and D. Bermbach, “Managing
latency and excess data dissemination in fog-based publish/subscribe
systems,” in Proceedings of the Second IEEE International Conference
on Fog Computing (ICFC 2020). IEEE, 2020.

[21] M. A. Prada, P. Reguera, S. Alonso, A. Morán, J. J. Fuertes, and
M. Domı́nguez, “Communication with resource-constrained devices
through mqtt for control education,” IFAC-PapersOnLine, vol. 49, no. 6,
pp. 150 – 155, 2016.

[22] Q. Fan and N. Ansari, “Towards workload balancing in fog computing
empowered iot,” IEEE Transactions on Network Science and Engineer-
ing, 2018.

[23] T. Han and N. Ansari, “A traffic load balancing framework for software-
defined radio access networks powered by hybrid energy sources,”
IEEE/ACM Transactions on Networking, vol. 24, no. 2, pp. 1038–1051,
2016.

[24] Z. S. Nejad, H. Heravi, A. R. Jounghani, A. Shahrezaie, and
A. Ebrahimi, “Vehicle trajectory prediction in top-view image sequences
based on deep learning method,” arXiv preprint arXiv:2102.01749, 2021.

[25] Z. Zhao, H. Fang, Z. Jin, and Q. Qiu, “Gisnet:graph-based information
sharing network for vehicle trajectory prediction,” in 2020 International
Joint Conference on Neural Networks (IJCNN), 2020, pp. 1–7.

[26] I. Lujic, V. D. Maio, and I. Brandic, “Efficient edge storage management
based on near real-time forecasts,” in 2017 IEEE 1st International
Conference on Fog and Edge Computing (ICFEC), May 2017, pp. 21–
30.

[27] J. Xie, C. Qian, D. Guo, X. Li, S. Shi, and H. Chen, “Efficient data
placement and retrieval services in edge computing,” in 39th IEEE
International Conference on Distributed Computing Systems, ICDCS
2019, Dallas, TX, USA, July 7-10, 2019, 2019, pp. 1029–1039.

[28] K. Beckmann and O. Dedi, “sdds: A portable data distribution service
implementation for wsn and iot platforms,” in 2015 12th International
Workshop on Intelligent Solutions in Embedded Systems (WISES), 2015,
pp. 115–120.

[29] H. Gupta, A. V. Dastjerdi, S. K. Ghosh, and R. Buyya, “ifogsim: A
toolkit for modeling and simulation of resource management techniques
in internet of things, edge and fog computing environments,” CoRR, vol.
abs/1606.02007, 2016.

[30] C. Sonmez, A. Ozgovde, and C. Ersoy, “Edgecloudsim: An environment
for performance evaluation of edge computing systems,” in 2017 Second
International Conference on Fog and Mobile Edge Computing (FMEC),
pp. 39–44.

[31] V. De Maio and I. Brandic, “Multi-objective mobile edge provisioning in
small cell clouds,” in Proceedings of the 2019 ACM/SPEC International
Conference on Performance Engineering, ser. ICPE ’19. New York,
NY, USA: Association for Computing Machinery, 2019, p. 127–138.

[32] A. Aral and I. Brandic, “Dependency mining for service resilience at
the edge,” in 2018 IEEE/ACM Symposium on Edge Computing (SEC).
IEEE, 2018, pp. 228–242.

[33] P. A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y. Flötteröd,
R. Hilbrich, L. Lücken, J. Rummel, P. Wagner, and E. WieBner,
“Microscopic traffic simulation using sumo,” in 2018 21st International
Conference on Intelligent Transportation Systems (ITSC), Nov 2018, pp.
2575–2582.

[34] X. Li, A. Ventresque, J. Murphy, and J. Thorburn, “A fair comparison of
vm placement heuristics and a more effective solution,” in 2014 IEEE
13th International Symposium on Parallel and Distributed Computing,
June 2014, pp. 35–42.

[35] T. Elgamal, A. Sandur, K. Nahrstedt, and G. Agha, “Costless: Optimiz-
ing cost of serverless computing through function fusion and placement,”
CoRR, vol. abs/1811.09721, 2018.

[36] H. Arabnejad and J. Barbosa, “List scheduling algorithm for hetero-
geneous systems by an optimistic cost table,” IEEE Transactions on
Parallel and Distributed Systems, vol. 25, pp. 682–694, 03 2014.

[37] R. J. Wang, X. Li, S. Ao, and C. X. Ling, “Pelee: A real-time object
detection system on mobile devices,” CoRR, vol. abs/1804.06882, 2018.

[38] G. McGrath and P. R. Brenner, “Serverless computing: Design, imple-
mentation, and performance,” in 2017 IEEE 37th International Confer-
ence on Distributed Computing Systems Workshops (ICDCSW), 2017,
pp. 405–410.

[39] Y. Ma, J. Rao, W. Hu, X. Meng, X. Han, Y. Zhang, Y. Chai, and
C. Liu, “An efficient index for massive iot data in cloud environment,” in
Proceedings of the 21st ACM International Conference on Information
and Knowledge Management, ser. CIKM ’12. New York, NY, USA:
ACM, 2012, pp. 2129–2133.

[40] B. Zhang, N. Mor, J. Kolb, D. S. Chan, K. Lutz, E. Allman,
J. Wawrzynek, E. A. Lee, and J. Kubiatowicz, “The cloud is not enough:
Saving iot from the cloud.” in HotStorage. USENIX, 2015.

[41] O. Ascigil, A. Tasiopoulos, T. K. Phan, V. Sourlas, I. Psaras, and
G. Pavlou, “Resource provisioning and allocation in function-as-a-
service edge-clouds,” IEEE Transactions on Services Computing, pp.
1–1, 2021.

[42] J. Dizdarević, F. Carpio, A. Jukan, and X. Masip-Bruin, “A survey of
communication protocols for internet of things and related challenges of
fog and cloud computing integration,” ACM Computing Surveys (CSUR),
vol. 51, no. 6, p. 116, 2019.

[43] A. Hakiri, P. Berthou, A. Gokhale, and S. Abdellatif, “Publish/subscribe-
enabled software defined networking for efficient and scalable iot
communications,” IEEE Communications Magazine, vol. 53, no. 9, pp.
48–54, 2015.

[44] J. Gascon-Samson, F. Garcia, B. Kemme, and J. Kienzle, “Dynamoth:
A scalable pub/sub middleware for latency-constrained applications in
the cloud,” in 2015 IEEE 35th International Conference on Distributed
Computing Systems, 2015, pp. 486–496.

[45] V. Setty, R. Vitenberg, G. Kreitz, G. Urdaneta, and M. v. Steen, “Cost-
effective resource allocation for deploying pub/sub on cloud,” in 2014
IEEE 34th International Conference on Distributed Computing Systems,
2014, pp. 555–566.

[46] T. Rausch, S. Nastic, and S. Dustdar, “Emma: Distributed qos-aware
mqtt middleware for edge computing applications,” in 2018 IEEE
International Conference on Cloud Engineering (IC2E), 2018, pp. 191–
197.

[47] S. Kotni, A. Nayak, V. Ganapathy, and A. Basu, “Faastlane: Accelerating
function-as-a-service workflows,” in 2021 USENIX Annual Technical
Conference (USENIX ATC 21). USENIX Association, Jul. 2021, pp.
805–820. [Online]. Available: https://www.usenix.org/conference/atc21/
presentation/kotni

