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Abstract—The Internet of Things (IoT) is gaining traction for
sensing and monitoring outdoor environments, such as water
bodies, forests, or agricultural lands. Sustainable deployment
of sensors for environmental sampling is a challenging task
because of the spatial and temporal variation of the environmen-
tal attributes to be monitored, the lack of the infrastructure to
power the sensors for uninterrupted monitoring, and the large
continuous target environment despite the sparse and limited
sampling locations. In this article, we present an environment
monitoring framework that deploys a network of sensors and
gateways connected through low-power, long-range networking
to perform reliable data collection. The three objectives corre-
spond to the optimization of information quality, communication
capacity, and sustainability. Therefore, the proposed environment
monitoring framework consists of three main components: 1) to
maximize the information collected, we propose an optimal sensor
placement method based on QR decomposition that deploys sen-
sors at information- and communication-critical locations; 2) to
facilitate the transfer of big streaming data and alleviate the
network bottleneck caused by low bandwidth, we develop a gate-
way configuration method with the aim to reduce the deployment
and communication costs; and 3) to allow sustainable environ-
mental monitoring, an energy-aware optimization component is
introduced. We validate our method by presenting a case study
for monitoring the water quality of the Ergene River in Turkey.
Detailed experiments subject to real-world data show that the
proposed method is both accurate and efficient in monitoring a
large environment and catching up with dynamic changes.

Index Terms—Energy efficiency, environmental monitoring,
gateway configuration, LoRaWAN, multiobjective optimization,
QR decomposition, sensor placement, wireless sensor networks
(WSNs).
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I. INTRODUCTION

THE PROTECTION of aquatic and terrestrial
environments is one of the key factors that play a

crucial role in the sustainable growth of the whole world
according to UN Sustainable Development Goals [1]. Health
and hygiene are vital components of the sustainability of
humanity, which comes from a clean and pollutant-free
environment. Thus, its monitoring becomes essential to
ensure the safety and well-being of society. Advances in
machine learning (ML) and the Internet of Things (IoT)
have laid the foundations for smart environment monitoring
(SEM), enabling the means to sense, analyze, and act on the
factors impacting the environment.

SEM provides the capability to tackle the challenges of high
spatial and temporal scales. Recent developments in sensing
technologies present an opportunity to efficiently monitor large
geographical areas with high temporal frequency [2].

However, substantial challenges need to be overcome before
the widespread deployment of sensors to collect data on large
spatial scales. Sensor placement plays a vital role in SEM.
Sensors must be placed in a minimal subset of locations yet
allow the collection of the maximum amount of information
on the region of interest [3]. Sensor placement in IoT appli-
cations is often handled by various placement strategies, such
as random, uniform, polygon based, or grid based [4]. For a
relatively moderately sized setting, optimal sensor locations
are estimated by information theoretic tools, such as convex
optimization [5], deep learning approaches [6], or Bayesian
methods [7]. These approaches are unsuitable for an effective
SEM since spatial information to describe the dynamic behav-
ior of an environment or sensitivity of events of interest is not
available in many locations [8].

Considering that only a limited number of sensors can be
deployed because of various prohibitive factors (e.g., upfront
and maintenance cost, ecological footprint), it is vital to deploy
these sensor nodes at the most advantageous locations. High
installation and energy costs coupled with the network lim-
itations stemming from factors, such as obstructions (trees,
buildings, etc.) and large distances result in inadequate spatial
coverage and monitoring of the environment [9]. Furthermore,
due to the nature of wireless communication, poor link qual-
ity caused by sensors that are too far apart or obstructed
by trees or hills results in many retransmissions in an
attempt to collect sufficient data. Packet retransmissions drain
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battery power, a scarce resource, reducing the lifetime of IoT
deployment [10].

The wireless sensor network (WSN) is a key enabling
technology in an SEM application, which can be defined
as a system that integrates a multitude of microcomponents,
including IoT sensor nodes, gateways, and base stations [11].
Most work on sensor placement considers only one type of
node, i.e., sensors or gateways [9]. However, in a resource-
constrained environment where only a limited number of
sensors and gateways can be deployed, the independent place-
ment of sensors and gateways not only significantly affects the
performance but also increases the cost of deployment. In addi-
tion, the impact of the number of gateways and the cluster of
sensors assigned to each gateway on energy consumption is not
thoroughly investigated, which could have considerable conse-
quences on the overall deployment and performance [12], [13].
Finally, a significant part of the previous work considers sen-
sor placement only for a small region of interest, in which the
impact of the distance between sensor nodes is not prominent
and, thus, excluded in placement models [14].

The goal of this work is to propose an SEM method
based on multinode (sensor and gateway) placement, incor-
porating heterogeneous constraints. The below objectives are
identified.

OBJ1 Information quality, i.e., the extent measured data
represents the target phenomenon. The data quality
can be maximized by choosing the sampling loca-
tions strategically based on the spatial distribution
of the measured parameters.

OBJ2 Communication capacity, i.e., the amount of data that
can be reliably transferred from the sensors to the
processing location. The sensors need to commu-
nicate with the gateways to transmit the collected
data. In large outdoor environments, this connection
between sensors and gateways is generally affected
by long distances and obstacles.

OBJ3 Sustainability, i.e., the ecological footprint, energy
efficiency, and economic viability of the measure-
ment infrastructure. A sensor undertakes different
actions, such as transmitting/receiving data, process-
ing, and remaining in an idle state with differ-
ent energy consumption characteristics, whereas the
energy consumption of a gateway depends on its
signal range.

We aim to determine how can an IoT deployment achieve
these three objectives, and make the following contributions.

1) We propose a unified environment monitoring frame-
work consisting of four components that allow an
estimate of a certain spatiotemporal environmental state.
Unlike most previous work, where only a single type
of node is considered for tackling the sensor placement
problem, in this work, we study the interdependence
of sensor and gateway placements. We use LoRaWAN-
based communication due to its low-cost, low-power
characteristics, and long-distance capability. Moreover,
generated placements are on a continuous space instead
of conventional but rigid structures, such as polygons or
grids.

TABLE I
NOTATION USED IN THIS WORK

2) We model the energy consumption of the proposed can-
didate deployments consisting of different numbers and
configurations (e.g., range) of sensors/gateways and aim
at building a robust and energy-efficient measurement
infrastructure. To the best of our knowledge, no such
evaluations exist for any other SEM method based on
multitype sensor nodes.

3) We validate the proposed algorithms within the con-
text of the sustainable watershed management through
IoT-driven AI (SWAIN) project using real-world water
quality data collected from 75 locations along the Ergene
River, Turkey.

For the rest of this article, we first provide the background
and related work on the techniques used in this work, as well
as our use case scenario in Section II. Then, in Section III,
we explain our solution, the GENS framework [(G)ateway
placement, (E)nergy modeling, (N)etwork modeling, (S)ensor
placement], in detail. We present an analysis and experimen-
tal evaluation of GENS using data from a real-world water
quality monitoring system in Sections IV and V, respectively,
and conclude the article in Section VI. Table I presents the
common notation used throughout this article.

II. BACKGROUND AND RELATED WORK

A. Use Case Scenario: Water Quality Monitoring

Water quality monitoring networks (WQMNs) are projected
to cover the life-cycle of freshwater usage from spring to
wastewater [15]. This broad spectrum implies many param-
eters, including weather conditions, ecology, industrialization,
and urbanization [16], [17]. Proposed WQMN: 1) performs
continuous water quality monitoring to collect quantitative
chemical properties of the surface water in a river basin
and 2) could sense the fluctuations in the chemical compo-
sition of the water for detecting pollution rate or temporal
discharges [18]. Such WQMN with accurate and timely mea-
surements requires to have sophisticated sensors at least on
each tributary. This is a high-cost solution as a large river
basin can have thousands of tributaries. Also, access to
most tributaries can be drudging due to several climatic and
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topographic obstructions at each altitude. Moreover, manag-
ing, communicating with, and providing power to high-end
devices while leaving them unattended in the wild is chal-
lenging. Therefore, a dependable yet low-cost network must
optimize not only the sampling locations but also the reliabil-
ity of the collected data. An optimized network must be able
to autonomously gather relevant data from decisive sampling
points, efficiently and reliably transmit timely data to a man-
agement system, and extend the lifetime of the whole network
for continuous interpretation of the measurements.

B. Low Power Wide Area Network Communication

In order to establish the link between IoT sensors and the
gateway units in a wide-range rural communication scenario
while also minimizing the energy consumption rates at the cost
of possibly having lower data rates (DRs), different low power
wide area network (LPWAN) protocols and technologies, such
as Sigfox1, random phase multiple access (RPMA)2, NB-IOT3

and LoRaWAN, can be used [19], [20], [21], [22], [23]. Across
the different technologies, although the chosen LoRaWAN
protocol does not outperform on every aspect of LPWAN com-
munication, it provides a balanced efficiency between latency,
coverage area, and payload length while also being cheaper in
terms of gateway deployment [20].

Sigfox runs in unlicensed bands ranging from 862 to
928 MHz. Its uses ultra narrowband (UNB) modulation to sup-
port up to 140 uplink message per day with a maximum of
12-byte payload size and a maximum data-rate of 100 bps. It
claims to have 40-km range outdoors [19], [20]. RPMA aims
to scale up to billions of IoT devices while also maximizing
the wireless device life to last as long as possible. According
to its official documentation, with only around 20 towers, it
can provide coverage up to 2000 miles while minimizing the
interference from obstructions, such as walls and agriculture.
With high link budget that operates at 2.4-GHz spectrum, 21
and 30 transmission power (TX) for uplink and downlink com-
munication, it claims to have better coverage than the existing
LPWAN protocols [20], [21], [23]. NB-IoT uses licensed LTE
frequency bands which introduce additional cost to the users
for spectrum usage unlike Sigfox and LoRaWAN. It provides
up to 1600-bytes payload size and can support up to 10-km
range in rural areas with 200-KHz bandwidth. Unlike Sigfox
and LoRaWAN, it is not as interference resistant. It does not
use adaptive data-rate and since it uses additional communica-
tion steps to ascertain certain QoS conditions, it ends up using
more energy than protocols such as LoRaWAN [20], [21].

LoRaWAN is a low-power wide-area network communica-
tion protocol that is defined on top of the LoRa modulation
technique [24]. LoRa is patented by Semtech,4 and the speci-
fications of LoRaWAN is defined by the LoRa alliance.5 The
protocol uses unlicensed Industrial Scientific Medical (ISM)

1https://www.sigfox.com/
2https://www.ingenu.com/technology/rpma/
3https://www.3gpp.org/
4https://www.semtech.com/lora
5https://lora-alliance.org/about-lorawan/

bands while operating under the duty-cycle and power regula-
tions defined by local institutions. In the context of this study,
a gateway unit is used as a sink and sensors as data generators
in order to establish LoRaWAN communication.

LoRaWAN is useful in rural areas for enabling data collec-
tion for many different purposes, such as health monitoring,
fire alarms, and agricultural support [25], [26], [27], [28].
An important issue within these environments is the gate-
way placement and corresponding cost problems, which have
been studied widely in the literature. Some solutions for-
mulate the issue of gateway and sensor placement as an
optimization problem and try to find optimal locations while
considering important LoRa parameters, such as spreading fac-
tor (SF) and power consumption [29]. As [30] mentions, it
is possible to utilize many different optimization, clustering,
and genetic algorithms to figure out different gateway place-
ment approaches with respect to different metrics. When the
communication needs to respect QoS requirements, gateway
placement should be done while considering different met-
rics [31]. Other studies focus on reducing collisions within
the network, which is a massive issue in LoRa-based networks,
especially those that cover long ranges [32]. By reducing both
collisions and the number of gateways, it is possible to reduce
the overall cost of network deployment. Another issue that
is not within the coverage of this study but is important is
the scalability of the gateway placement, which needs to sup-
port future possible network congestion when the number of
sensors increases [33].

In the proposed architecture, the sensors are distributed in
a vast rural area across a large river basin. This environmental
setup demands long battery life as well as long-span communi-
cation with minimum cost on gateway placements for sensors.
The LoRaWAN protocol provides these required aspects by
design. Another advantage of using LoRaWAN in our setup is
the ability to utilize a limited number of frequency channels
in rural areas with fewer collisions.

C. QR Decomposition

Within the field of SEM, the sensor placement problem has
been studied extensively in indoor environments, where spa-
tial distance is not of crucial importance [11], [34]. Therefore,
the studies tend to focus on a single objective: maximizing
the information collected. For vast outdoor environments, the
goals of sensor placement are different and, thus, different sen-
sor placement strategies, considering multiple constraints, are
required. Determining optimal number of sensor to be placed
is intractable via brute-force search among the combinatorial
possibilities. There are

(n
k

) = (n!/k!(n− k)!) possible choices
of k sensor nodes out of an n-dimensional space.

Monitoring a vast outdoor environment only with a handful
of sensors requires considering the cost and data loss. When
the area to be monitored is relatively large, the cost of preva-
lent sensor placement would be very high and may result in
transmission delay and slow response. The data corresponding
to the whole region can be reconstructed with a small amount
of information collected through sparse sensors if the spa-
tial correlation of the monitoring information is high. When
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Fig. 1. Sparse sampling example: locations (1st, 4th, and 7th) are extracted
according to C in which black square represents 1, and the rest of the matrix
contains 0.

sensors are sparse, it is essential to study the deployment
methods to enhance the accuracy of the reconstructed data.
Therefore, it is desirable to determine optimal locations to
achieve the highest reconstruction accuracy.

We model the sensor placement as a reconstruction problem,
that is, reconstructing a high-dimensional signal from a lim-
ited amount of in site measurements. The sampling locations
are optimized to extract sufficient features for reconstruction
and prediction from the input space. Let xi ∈ R

n denote an
n-dimensional spatiotemporal signal and X ∈ R

m×n denote a
matrix that contains the samples xi. Then the measurement
matrix C ∈ R

r×n can be used to select the sampling locations

C = [
eγ 1, eγ 2, . . . , eγ r

]
. (1)

Here, eγ ∈ R
n are the standard basis vectors that are “1”

at γth element and r ≤ m. An example of sparse sampling is
shown in Fig. 1. The measurements at sampling locations y
are chosen to guarantee the best feasible reconstruction of X̂.
The sampling locations in the signal correspond to in-situ mea-
surements in X. A data-driven approach such as singular value
decomposition (SVD) can be used to find the optimal sen-
sor locations and the suitable canonical matrix C [35]. Given
a suitable canonical basis matrix C the data matrix can be
compressed as shown in

Y = CX. (2)

Only keeping r basis from SVD results in Tr = XVT
r .

Therefore, the spatiotemporal signal X̂ can be represented
using sparse samples

X̂ = Tr(CTr)
−1Y. (3)

As shown above, the optimization of sensor locations
also requires the optimization of the measurement matrix.
Therefore, the sensor locations are optimized by maximizing
the singular value spectrum of the principal components

Ŝ = arg max
S
|detCsTr|. (4)

The optimization of (4) can be performed by greedy
heuristic approaches such as empirical interpolation meth-
ods (EIMs) [36]. In this work, we employ the pivoted QR
decomposition-based approach for the optimization of (4). The

optimal sensor locations correspond to the top r pivots of the
QR decomposition

∣∣∣detACT

∣∣∣ = |detQ||detR| =
∏

i

|rii|. (5)

D. Multiobjective and Multinode Sensor Placement

Sensor placement in WSN presents a hard optimization
problem, which is further complicated by the need to take
gateway locations into consideration and the requirement for
energy minimization and network lifetime maximization. A
WSN consists of a large number of sensors and gateways (sink
nodes) to monitor a target area. The locations of sensors and
gateways should be determined to maintain low cost, network
connectivity, and coverage. The multiobjective sensor place-
ment optimization methods can be broadly classified into two
categories: 1) the use of weight factors to realize different
combinations of fitness functions and to essentially transform
them into a single objective and 2) the use of a multiobjective
optimization algorithm to find a tradeoff between conflict-
ing objectives by generating Pareto front and nondominated
solutions. A multiobjective strategy based on information
entropy is developed in [37] to detect damages in bridges. A
multiobjective combinatorial optimization based on a reduced
order model is proposed in [38] to maximize the monitoring
performance while minimizing the deployment cost. A genetic
algorithm-based sensor placement optimization algorithm is
presented in [39], which results in significant improvement
in structural damage detection accuracy compared with tradi-
tional approaches. Energy-aware sensor placement is critical
for network lifetime as these sensors are inherently resource-
constrained [40]. A stochastic EfI method [41] is presented for
determining sensor locations based on optimal energy usage.

Another factor that influences the reliability and efficiency
of the deployed network is the gateway locations [42].
Gateway locations can affect the robustness of communica-
tion and network lifetime as sensors need to be connected
with the appropriate gateways to ensure robust and efficient
data collection. Furthermore, the distance between the sensors
and the gateways is one of the most important factors affect-
ing energy consumption. To address the problem of positioning
gateways, researchers have formulated this as an optimization
problem and attempted to solve it using metaheuristic meth-
ods [43], ant colony optimization [44], and particle swarm
optimization algorithms [45]. Several other techniques have
also been reported in the literature, for instance, the p-median
model to determine gateway locations [46] and energy-aware
clustering architecture for maximizing network lifetime [47].

The research reviewed in the literature suggests that the
multiobjective and multinode placement problems have been
solved with relatively small to medium-sized networks to mon-
itor small to medium target areas. Moreover, the independent
optimization of sensor and gateway placements can result in
suboptimal performance [48]. Therefore, a notable gap exists
in this field, where the optimization of both sensor and gate-
way placements needs to be addressed, considering the limited
network availability, variable placement costs, and objectives
related to information quality and energy efficiency.
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Fig. 2. Data flows among the four modules of the GENS framework. The
external inputs are highlighted with dots.

In this work, the main goal is to monitor water quality;
therefore, objectives, such as information quality, have to be
prioritized over others (i.e., network latency and energy effi-
ciency). Aggregation approaches, such as [49], are widely
used to prioritize objectives. However, it is difficult to deter-
mine the correct weights to achieve the best solution. To this
end, instead of finding a Pareto-optimal solution for all identi-
fied objectives, we perform a multistage optimization, similar
to [50]. In this class of approaches, first, an optimal solution
for a specific objective is found. Then, the solution is updated
in subsequent iterations to improve it also for other objectives.

III. GENS FRAMEWORK

The four modules that constitute the GENS framework,
their order of execution, and input/output relationships among
them are demonstrated in the data-flow diagram in Fig. 2.
These modules contribute to achieving OBJ1–3 introduced
in Section I. More specifically, the process starts with the
gateway placement module, which takes the offline sampling
locations (1) as its input and generates a hypothetical gateway
deployment (2). In this deployment, it is assumed that each
offline sampling location is equipped with a sensor. Although
far from optimal in terms of OBJ1 and OBJ3, the hypotheti-
cal deployment provides the means of estimating the optimal
communication quality (OBJ2) for a large number of locations
covering the target environment. The estimates (3a) are based
on the network simulation within the network modeling mod-
ule. Moreover, the use of initial sampling locations enables
us to incorporate use cases with a monitoring infrastructure
already available, which can be improved upon through the
GENS framework.

In the next step, the sensor placement module identifies
the optimal locations for collecting the most representative
data (toward OBJ1) based on offline measurements (3b) and

for transferring them effectively (toward OBJ2) based on
communication quality (3a). The output is the optimal sen-
sor locations ranked by their scores (4), which the gateway
placement module utilizes to determine the actual gateway
locations. This module ensures that streaming data from these
sensor locations can be transmitted to where they are processed
(toward OBJ2). At this point, it is possible to avoid an exces-
sive number of sensors and gateways (toward OBJ3); however,
the actual impact on energy consumption is not known. For
instance, a higher number of gateways could result in lower
consumption due to the reduced distance of LoRaWAN data
transmission. Therefore, several candidate solutions with vary-
ing gateway and sensor counts or gateway coverage areas are
generated.

The purpose of the energy modeling module is to evalu-
ate these solutions (5a) using energy consumption models that
rely on real measurements (5b) and determine the final energy-
efficient deployment (6) toward OBJ3. The GENS framework
facilitates the cost-effective monitoring of remote outdoor
environments, such as forests or rivers, that are characterized
by a lack of network availability and a dependable energy
source. This is achieved through the deployment of sensors
and gateways at critical locations, which optimizes network
utilization and energy consumption, without compromising
the information quality. It is worth noting that the proposed
module implementations can be easily replaced by alternative
algorithms without changing the high-level GENS framework.

A. Gateway Placement

The gateway placement module utilizes sensor scores
(Section III-C) and network simulation (Section III-B) to deter-
mine the placement with the highest communication quality
that also covers the sensors with the highest scores. To that
end, we use a clustering algorithm to associate the sensors.
The first step is calculating the signal range for each sensor
represented by a sphere. This radius is an input parameter
that ranges between 500 and 10 000 m. Distance ranges are
chosen in a wide spectrum to observe the negative effects of
distance on communication performance. Then, these spheres
and their intersections with the earth’s surface are calculated.
These intersections are considered potential gateway locations.

An example of determining the intersection and potential
gateway locations can be seen in Fig. 3. When a gateway is
placed in such an area, all sensors covering the intersection
will be able to communicate with the corresponding gateway.
However, the number and area of intersections vary with signal
range assumptions. In order to decide on the intersections to be
used as gateway locations, they are sorted in descending order
by the number of sensors they cover. Then, they are added to
the selection iteratively until all sensor set is covered. The final
gateway location is determined as the geographical midpoint
of the intersection points, whereas the gateway altitude is the
average height of the sensors within their respective cluster.

Aside from the signal range and sensor score threshold,
two more parameters are used during the clustering process.
The first is a threshold that removes the clusters with fewer
sensors than the given value. The value 0 indicates that no
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Fig. 3. Clustering example. The intersection of the signal ranges (dashed
circles) for the river sensors (red dotes) is used to determine potential gateway
(yellow dot) regions.

TABLE II
CLUSTERING & NETWORK SIMULATION PARAMETERS

clusters are removed. This parameter can be used to reduce
the cost of deployment. The second parameter is a binary
value that determines whether the sensors within multiple gate-
way ranges should be removed, reducing the possible signal
conflicts during the network simulation process.

B. Network Modeling

A simulation environment is created using ns-3 network
simulator [51] to evaluate the communication quality with
the calculated gateway locations. ns-3 does not ship a built-in
LoRaWAN support; therefore, a third-party LoRaWAN mod-
ule is used [52]. This module uses class-A device type defined
under LoRaWAN specifications and its corresponding com-
munication flow, which has the lowest power consumption
amongst device classes A, B, and C [53]. We expand the
default state machine model used by this module to reason
about the hardware properties we use in our simulations. The
expanded state machine manages the state changes of the
sensors to schedule the packet transmissions to the gateways.

Important parameters used in the clustering and network
simulation process are given in Table II. For the input param-
eters path-loss exponent, reference distance, and reference loss
values fed into the network simulation, it is important to

consider that different obstacles, specifically when the sensor
antenna is placed lower than the tree height level, will affect
the network performance. Therefore, these values for calcu-
lating the signal power are chosen as 2.2, 100 m, and 78 dB,
respectively, in accordance with a previous study that focuses
on different vegetation densities [54]. These values correspond
to low-density tree vegetation in accordance with the selected
experimental use case (see Section IV).

Additionally, three sub-bands are used by the LoRaWAN
module; 868–868.6 and 868.7–869.2 for uplink and downlink
requests with the duty cycle of 1% and 0.1%, respectively, and
869.4–869.65 with a duty-cycle of 10% for downlink requests
within the second receive window of class-A LoRaWAN
device communication. This enables the gateway to send
more ACK packets compared to using only 1% duty-cycle
frequencies. When it is not possible to send a packet within the
first receive window due to the duty-cycle limitation of 868.1
frequency, gateways can send ACK packets within the second
receive window using the higher 868.5 frequency. Therefore,
the base 868.1 frequency used for uplink messages and its
corresponding duty-cycle is split into equal time slots for
each sensor. Another frequency with a higher duty-cycle for
downlink can be utilized by the gateway to send back ACK
messages. It should be noted that when the gateway is in its
downlink transmit mode, it cannot receive the incoming pack-
ets. The adaptive data-rate approach is not utilized, and due
to the large distance covered by the clusters, the DR is set to
0, and the SF is set to 12 by the LoRaWAN module.

Our implementation also includes geographical details,
detailed hardware energy consumption rates, and simulation
parameters. Due to space limitations, parameters set to values
from the literature are not discussed here. Interested readers
may refer to the source code repository,6 which explains the
simulation and clustering setup in further detail.

C. Sensor Placement

The sensor placement model consists of a framework that
scales to arbitrarily large problems, leveraging modern tech-
niques in ML. Reducing the number of sensors through sensor
placement can reduce the deployment cost and enable faster
estimation of the environment. For the cases where sam-
pling resources are limited, the deployed sensors may not be
able to monitor the environment effectively as they fail to
capture all relevant features. To address that, we develop a
framework to reconstruct and predict the entire spatiotempo-
ral signal from limited samples. Data-driven approaches such
as QR decomposition can be used to optimize sensor place-
ment [55]. We propose an MO sensor placement method for
signal reconstruction based on column-pivoted QR decom-
position (MSPQR). Compared to model-based optimization
methods, data-driven approaches have lower complexity, are
easier to implement, and scale better to large areas.

Data from physical systems typically possess an extremely
low-rank spatiotemporal correlation structure that can be
exploited to reduce the number of sensors for global infer-
ence drastically. Consider a matrix X of m samples of data

6https://github.com/HalitU/SWAINlorawangateways
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xi ∈ R
n in which the columns correspond to spatial locations

X =

⎛

⎜⎜
⎜
⎝

x1
x2
...

xm

⎞

⎟⎟
⎟
⎠
. (6)

Furthermore, assume ψ to be a matrix derived from X
(e.g., linear combinations of rows or right singular vectors
of X). For an index set S, a matrix Xs formed by collecting
the columns of X with indices in S. The set of indices Ŝ that
maximizes the determinant of ψS or product of singular values
of ψS provides optimal interpolation points [56].

Even though finding such a set of indices Ŝ is nonconvex
and NP-hard, there are some reasonable approximate algo-
rithms [57], [58]. However, these approaches do not scale well
with data dimensionality. The algorithm for placing sensors at
optimal and cost-effective locations for environmental mon-
itoring by maximizing the product of the singular values of
ψS is based on pivoted QR decomposition. The pivoted QR
algorithm is more scalable and substantially more efficient
than near-optimal and polynomial-time solutions. As explained
previously, a high-dimensional signal can be reconstructed
from sparse samples through sparse sampling techniques

T̂ = arg min
T
||X − XST||F. (7)

where ||.||F is the Frobenius error norm, and XS is the
matrix consisting of columns of X with indices in S. The
solution for (7) is the least-squares solution (Moore–Penrose
pseudoinverse). Therefore, the reconstruction error is given by

e(s) = ||X − XsX†
s X||F

||X||F (8)

where X†
s is the Moore–Penrose pseudo-inverse of Xs.

Including cost constraints in sensor placement problems
is particularly important for monitoring large environments
where some sensor locations cost more than others but may
be more informative. Given the cost vector τ associated with
each sample location and the budget b, the objective function,
which also includes the cost constraint, is defined as

Ŝ = arg min
S

e(S) s.t.
∑

s∈S

ηs ≤ b. (9)

For a given b, there exists a λ such that

Ŝ = arg min
S

e(S)+ λ
∑

s∈S

ηs. (10)

The sensor placement is modeled as a cost-constrained
problem in a relaxed form. A parameter for tracing out
the cost-error curve is introduced, representing the balance
between reconstruction quality and cost. The algorithm for
finding optimal sensor placements is based on a modification
of pivoted QR decomposition [55]. The intuition for using col-
umn pivoted QR decomposition for sensor placement is that,
for a given k, the first k pivots should be a suitable choice of
sensor locations. Pivoted QR decomposition approximates the
optimal solution by iteratively updating Sk+1 so that |detAk+1|
is maximum. This process is summarized in Algorithm 1. Let

Algorithm 1 Sensor Placement: Column Pivoted QR
Decomposition
Input: data matrix X, Q, R, number of sensors k, communi-
cation cost vector τ , cost-error balance γ
Output: set of k optimal locations s, site scores

1: S ← 1:n
2: for j = 1, ..., k do
3: for i = 1, ..., n do
4: vi ← ||Rj:m,i||2 − γ τ si
5: end for
6: l ← index of the maximum ofvj:n � select pivot
7: v ← Rj:m,j−1+l

8: swap(Rj:m,j,Rj:m,j−1+l)

9: swap(sj, sj−1+l)

10: σ ← ||v||2
11: u ← (v+ sign(v1)σe1)/

√
2σ(σ + |v1|)

� normalized Householder reflector
12: Rj:m,j:n ← Rj:m,j:n − 2uuT Rj:m,j:n
13: Q:,j:n ← Q:,j:n − 2Q:,j:nuuT

14: SSj = RS ∗ (1− τ)
15: end for

Fig. 4. Mean squared signal reconstruction error.

X be the data matrix containing m samples of an n-dimensional
signal, R be the projections (i.e., random) of X, and Q as an
identity matrix.

1) Model Training: The sensor placement model based on
pivoted QR decomposition involves a few hyperparameters,
such as the type and number of the basis used for matrix
reconstruction [55]. These hyperparameter values are chosen
by experimenting with the different combinations of values
using the grid search approach. However, apart from these
hyperparameters, some other parameters, such as sensor range
and type of cost used to specify the cost constraints, are not
directly linked with the model but influence its performance.
The effect of these parameters is studied and explained in
Section V-B. To assess the reconstruction capability of the
model, the data set is divided into a training set and a test set.
The output consists of a ranked list of optimal sensor locations
with corresponding scores. The number of optimal locations
influences the reconstruction error.

Fig. 4 demonstrates the relationship between the number of
sensors and reconstruction error. To extract the tailored basis
for our data set, we adopt the methodology used in [55] to
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select the type and number of basis before applying the pivoted
QR decomposition. Of the three preprocessing methods (SVD
modes, randomized modes, and the raw data), SVD yields the
best results, as is evident from Fig. 4. The model’s ability to
reconstruct the signal enhances as we increase the number of
sensors. However, due to the cost and energy constraints, we
limit the number of sensors to 30, for which the reconstruction
error is sufficiently low. This corresponds to 60% reduction in
the deployed sensors and significant energy and cost savings.

D. Energy Optimization

Finally, we apply energy optimizations to improve the
energy efficiency of placements found in previous steps.

1) Energy Model: First, we develop an energy model based
on energy consumption data collected through network sim-
ulation. We assume all communication is performed through
LoRaWAN protocol, as it is common in the target scenario. For
each sensor s in a placement configuration P, energy consump-
tion E(s) is equal to the sum of its passive energy Epassive,
i.e., energy consumed for basic sensor operations (idle and
low power operational modes) plus the active energy (i.e., for
processing and active sleep), Eactive, and energy for commu-
nication, Ecomm. Being energy the integral of power over time,
we define Epassive(s) and Eactive(s), respectively, in (11)
and (12), where t is the current time instant

Epassive(s) =
∫ end

start
Pidle(s, t)+ Psleep(s, t) dt (11)

where Pidle is the power the sensors in idle mode consumes

Eactive(s) =
∫ end

start
Pactive(s, t)+ Ptrans(s)+ Pcomm(s) dt

(12)

where Ptrans is the power consumed during the power-level
transitions (i.e., from sleep to active mode), Pactive is the
power consumed while the sensor is in active mode, and Pcomm
is the power consumed during communication. Since Pidle,
Psleep, Pactive and Ptrans are constant over time, we focus
on communication energy, Ecomm(s). Since we are interested
in the energy consumption of a specific placement, we include
in the energy of communication per sensor ecomm(s, gs) also
the energy consumption for data transfer of its closest gateway.
Ecomm(s) is the sum of each data transfer between the sensor
and its closest gateway, gs. We define the energy of a data
transfer between a sensor s and gateway gs ecomm(s, gs), as in

ecomm(s, gs) =
∫ end

start
Ps
comm(s, gs, t)+ Pg

comm(gs, s, θ(gs), t)dt

(13)

where θ is the distance threshold within which the sensor
communicates and Ps

comm(s, gs, t) and Pg
comm(gs, s, θgs , t) are,

respectively, the power consumption of communication for
sensors and gateways. In Pg

comm(gs, s, θgs , t), we consider θgs

since the TX of gateway depends on the geographical dis-
tance from the sensor. Also, start indicates the time instant
where the transfer starts, and end is calculated according to
the amount of data and the available bandwidth, i.e., end =

Algorithm 2 Generation of Population
Input: pivot, pSize
Output: P

1: P← ∅
2: for i ∈ [0, pSize] do
3: s← ∅
4: for all g ∈ pivot do
5: thresList← possibleThres(g)
6: k← rand(0, length(confList))
7: g′ ← confList[k]
8: s← s ∪ {g′}
9: end for P← P ∪ {s}

10: end for
11: return P

start + [data/bw(s)]. Ecomm(s) is then equal to the sum
of the energy of each transfer between s and gs, ecomm(s,gs).
Energy consumption for placement P is E(P) in

E(P) =∑
s∈P(S) E(s) =∑

s∈P(S) Epassive(s)+ Eactive(s)+ Ecomm(s)

(14)

where P(S) is the set of sensors included in placement P. For
our placement optimization, we focus on minimizing E(P).

2) Energy-Aware Placement Optimization: The method
used to reduce the energy consumption of gateway placement
is described in this section. We assume that the placement
solution contains a list of gateway and sensors. While sensors’
and gateways’ locations are fixed by sensors’ and gateways’
placement modules, gateways’ LoRaWAN modules can be in
different admissible configurations, which affect Ecomm. The
goal of this module is to find a configuration in the proposed
gateway placement that reduces Ecomm.

Algorithm 2 describes the generation of the initial popu-
lation. We start to explore alternatives based on a starting
solution computed by previous models, which we refer to
as pivot solution. Starting from pivot solution p, nP different
solutions are generated by randomly selecting an alternative
threshold for each gateway in the pivot solution (lines 4–9).

The energy optimization is described by Algorithm 3. First,
we calculate Ecomm value on one day-long execution, based
on (14) (Algorithm 3, line 1). Then, we select the solution with
the lowest Ecomm, which will be the pivot solution for gen-
erating the initial population (lines 3–9). Once population P
has been generated, we explore possible solutions by applying
genetic algorithms metaheuristic in lines 11–19 [59]. First, we
calculate the fitness of each solution in population, i.e., Ecomm.
Afterward, we apply a uniform crossover with binary tourna-
ment selection to allow the combination of the solutions with
lower fitness. Then, we apply mutation to allow further explo-
ration of solution space. At the end of this phase, we select
the best pSize solutions to continue with further iterations until
the termination condition is reached. In our case, we consider
a termination condition either reaching the maximum number
of iterations, nIter, or if the minimum Ecomm value does not
change in the last ten iterations.
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Algorithm 3 Energy Optimization [59]
Input: P, pSize, nIter, condition()
Output: P′[0]

1: minEnergy← computeEnergy(P[0])
2: pivot← P[0]
3: for all p ∈ P do
4: tmpEnergy← computeEnergy(p)
5: if tmpEnergy ≤ minEnergy then � Find pivot
6: minEnergy← tmpEnergy
7: pivot← p
8: end if
9: end for

10: iter← 0
11: P′ ← generateConfigurations(p, nP)
12: while iter < nIter ∧ condition() do
13: fitness(P′)
14: crossover(P′)
15: mutation(P′)
16: P′ ← selection(P′, nP)
17: i← i+ 1
18: end while
19: return P′[0]

Fig. 5. Geographical overview of the Ergene watershed use case located in
Northwestern Turkey (the image is courtesy of TUBITAK project 115Y064).

IV. USE CASE ANALYSIS

The presented study is applied for water quality moni-
toring of the Ergene River located in the Thrace region of
Turkey, which is shown in Fig. 5. The environment intended
to monitor for micropollutants in this case study is stretched
to 420 km. The total catchment area is 14 439 km2. The area
is heavily industrialized, and about 40% of the catchment is
active agricultural land. It is a very complex site for environ-
mental monitoring, as the anthropogenic disturbances include
industrial discharges and discharges from the water treatment
plants. All these episodic changes dictate the chemical and
physical parameters at the river and, thus, increase its com-
plexity. A large amount of activity and its importance from
an environmental and ecological perspective are some of the
motivating factors to study and assess the water quality of

this river. This is a real-world use case within the scope of the
SWAIN project,7 which aims to develop an IoT- and AI-driven
early warning system for micropollutants in European rivers.
One of the main objectives is to achieve continuous moni-
toring of river water quality at remote places using WSNs
with low power consumption, low cost, and high detection
accuracy.

We demonstrate the application of our GENS framework
to design an efficient, low-cost WQMN and develop a proof-
of-concept solution. The network of sensors and gateways is
designed to monitor the water quality in Ergene River con-
tinuously. Fig. 6 presents the output of the GENS framework
and orchestration of a WQMN consisting of the optimal num-
ber of sensors and gateways to monitor the Ergene River. The
original 75 measurement locations identified by the environ-
mental experts (Fig. 5), which are considered candidate sensor
locations in the simulated environment, are shown in Fig. 6(a).
It is essential to mention here that these are chosen indepen-
dently of their ability to transmit the collected data because
they were manual sampling locations, and network quality was
not taken into account in their selection.

In the next step, sensors are connected to gateways to allow
them to transmit the collected data to the monitoring station.
The network resulting from the gateway placement module is
displayed in Fig. 6(b). Each gateway in this network contains
a minimum of two sensors. The network modeling module
evaluates the network performance and provides the necessary
parameters to calculate the communication cost (CC) asso-
ciated with each sensor location. The sensor locations that
are not included in the candidate network or sensors that are
unable to transmit due to connectivity issues are considered
high cost and marked as red circles in Fig. 6(b).

Since assembling and maintaining a network of this size is
quite challenging, the network proposed by gateway placement
is optimized further through the sensor placement module. It
keeps sensors that are both informative and communication-
efficient and strategically removes sensors whose contributions
in reconstructing the original sensor signal are either insignif-
icant or redundant. The WQMN displayed in Fig. 6(c) is used
to monitor the water quality of the Ergene River. The WQMN
consists of 30 optimal sensors connected through a network of
ten gateways. The total number of gateways is reduced from
15 to 10, which is a reduction of 33%, and the number of sen-
sors required to monitor the river is reduced by 40% compared
to the original network with 75 sensors.

Ergene River use case also demonstrates that the GENS
framework can be used to improve upon an existing moni-
toring infrastructure. In this circumstances, it would output
the minimum cost / maximum information deployment with-
out moving or destroying existing monitoring stations. It is
also possible to allow a limited number of changes to further
enhance information and communication quality. Considering
that conventional WQMN are already available in many
rivers, this capability improves the flexibility and practical
applicability of the proposed algorithms.

7https://swain-project.eu/



22074 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 24, 15 DECEMBER 2023

Fig. 6. Monitoring of the Ergene River through optimization of gateways and sensors: (a) original network of 75 sensors, (b) gateway and sensors resulting
from the gateway placement module, and (c) set of 30 optimal sensor locations. The numbers above the gateways represent the number of associated sensors.

V. EVALUATION

A. Experimental Setup

The experiments are based on a simulation of the above use
case scenario, supported with real-world water quality data.

1) Data Set: The data used in this study were collected
from 75 locations on the Ergene River between August 2017
and May 2018 using direct injection liquid chromatography-
tandem spectrometry. Locations on the river network for
assessing the water quality were selected by capturing the
micropollutant profile of the major industrial and domestic dis-
charges. Along every major tributary, there exists at least one
sampling point. Water samples were collected at each loca-
tion during four different periods: 1) Summer 2017; 2) Fall
2017; 3) Winter 2018; and 4) Spring 2018. The river flow rate
was also measured at each location at the time of sampling. A
total of 222 chemical substances and 131 micropollutants in
the water samples taken from 75 locations on the Ergene River
in four seasons were found in the collected samples [60].

2) Performance Metrics: The evaluation of the proposed
framework involves the following five metrics.

CC: Communication is a major energy consumer as the sig-
nal power in the sensor network drops as the distance from the
transmitter increases. This means that to reach a slightly longer
distance, the sensor needs to dispatch much higher transmit
power.

We propose two cost metrics to model the CC: 1) network
CC (NCC) and 2) gateway cost (GTC). The NCC is defined
as the sensor’s ability to transfer the data packets successfully.
Since each transmission drains the battery, frequent packet fail-
ures may result in high retransmissions, which consequently
could affect the lifetime of the deployed network. Hence,
we have to ensure that our sensor placements have reliable
communication links. Sensor networks deployed to monitor
outdoor environments can involve sensors that are too far apart.
This geographical distance between sensors and gateways can
have a significant influence on the overall performance of the
network. To model this constraint into our placement algorithm
we propose GTC which is defined as the angular (Haversine)
distance between the sensors and the closest gateway. The
NCC and GTC are defined in (15) and (16), respectively.
Here, TPA is the total packet attempts and ST successful
transmissions

NCC(s) = (TPA− ST)

TPA
(15)

GTC(s) = 2arcsin

√√√
√√√

sin2 ((x1 − y1)/2)

+ cos (x1) cos (y1)

sin2 ((x2 − y2)/2)

(16)

where the coordinates x and y are for sensors and gateways.
Reconstruction Error: The proposed sensor placement

framework is evaluated using the metric called reconstruction
error, which as the name suggests measures the sensors ability
to reconstruct the area of interest. We use MSE as the metric
to estimate the reconstruction error.

Network Performance Value (NPV): In order to evaluate the
network simulation of the Network Modeling Module, a basic
formula called NPV is composed from the individual results

NPV = 100× SS

FPA× LEC
. (17)

Here, FPA stands for failed packet attempt count, LEC
LoRaWAN energy consumption, and SS site score as in

SS = RS× (1− CC). (18)

To quantify the fitness of a particular sensor location,
site score takes the reconstruction score (RS) and CC into
consideration.

Average Round Trip Time: Round trip time is the time spent
per successful packet transmission, which includes transmis-
sion of a single packet and receipt of its ACK signal.

Total Energy Consumption: This metric includes the total
passive, active, and communication energy consumption of the
sensors in kilojoule per hour (kJ/h).

3) Baseline Algorithms: The performance of the MSPQR
is compared to the following baseline methods.

Random (RAND): Rand is a baseline algorithm in which
sensor locations are deployed randomly in the input space. The
system time is used as a seed for generating random locations.

MI-Based (GP-MI): Gaussian process (GP) is used in [34] to
place near-optimal sensors. Given a GP model, various criteria
have been proposed for assessing the quality of sensor place-
ments, including mutual information (MI) and entropy. GP-MI
seeks to maximize the MI between the chosen locations.

Entropy-Based (GP-EN): GP-EN aims to place sensors
where uncertainty about the signal is the highest, that is, the
highest entropy location of the GP. Placements based on GP-
EN result in sensors that are uncertain about each other’s
measurements [61].
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Fig. 7. Evaluation results of MSPQR and baseline algorithms in sensor placement. (a) Total micropollutants detected. (b) Unique micropollutants detected.
(c) NCC.

Single-Objective (QR): We implement the single objec-
tive QR-based sensor placement (QR) for signal reconstruc-
tion [35]. QR aims to find optimal sensor locations without
considering any cost constraints. To make the evaluation sim-
ple and fair, we use the same test set for assessing the quality
of predictions for both MSPQR and QR methods.

Multiobjective (NSGA-III): We implement a nondominated
sorting genetic algorithm (NSGA-III) for multiobjective sensor
placement as proposed in [62]. We use grid-search to find
appropriate values for the hyperparameters, such as population
size, crossover, number of offsprings and function evaluations.
Moreover, we use pseudo-weights for multicriteria decision-
making (MCDM) to choose an optimal solution from the set
of nondominated solutions.

For the baselines that include stochastic decisions (RAND
and NSGA-III), we provide 95% confidence intervals.

B. Numerical Results

1) Sensor Placement: This section presents the numerical
results for reconstructing and predicting the spatiotemporal
signal using data collected from the Ergene River.

Fig. 7 compares and contrasts the performance of MSQPR
and baseline methods. We compute and compare the number of
pollutants detected at the proposed 30 sensor locations for each
method, as shown in Fig. 7(a) where the y-axis shows the num-
ber of micropollutants detected at each location. The proposed
sensor placement method for sensor signal reconstruction takes
advantage of the local features of the data and outperforms the
baseline methods except for QR in terms of accuracy and the
total number of micropollutants detected. The performance of
the single-objective QR method is slightly better than MSPQR
since QR solely focuses on finding optimal sensor locations
without any consideration for the CC or distance to the nearby
gateways, which is essential for the sustainable monitoring of
large environments such as rivers. The superior performance
of QR-based methods over the genetic and GP-based meth-
ods is because the tailored bases learned from the local data
enable these models to better reconstruct the sensor signal,
which in turn helps to find better sensor locations. GP-MI per-
forms comparably well in the earlier phase but is outperformed
by both reconstruction-based methods (MSPQR and QR) as
the number of sensors increases. Multiobjective NSGA-III

does reasonably well and achieves similar results to GP-MI.
However, its performance in terms of information quality is
not as good as NCC (discussed below). GP-EN is not able to
perform as well as GP-MI and is only marginally better than
RAND. The lower performance of the GP-EN compared to
GP-MI can be explained by the fact that it considers entropy
rather than the prediction quality of the selected sensor loca-
tions and tends to place sensors at the borders [62]. We also
provide the theoretical maximum value calculated as (num-
ber of sensors) (131 unique micropollutants). This limit is
not generally reached, as not all micropollutants are present
in every part of the river.

Results of unique micropollutants detected, displayed in
Fig. 7(b), are generally consistent with Fig. 7(a). The high
number of unique micropollutants detected by MSPQR and
QR (121 and 126 of maximum 131) highlights the fact that
reconstruction-based models can better capture the variance
of the original sensor signal than the other baseline methods.
For instance, two sensors that happen to be on the same trib-
utary but at different altitudes might be measuring redundant
information. NSGA-III and GP-based methods are not able to
discern between the two as (mutual) information provided by
these sensors is likely to be similar. Therefore, both sensors
would be regarded as optimal locations. On the contrary, any
sensor which does not contribute to the reconstruction of the
original signal or measures redundant information would be
given low scores and hence removed from the placements.

Fig. 7(c) illustrates how CC changes with respect to
the number of sensors. The performance of MSPQR and
NSGA-III methods is similar up to a total of 15 sensors.
However, as the number of sensors increases, NSGA-III
performance deteriorates a little, while MSPQR consistently
outperforms NSGA-III. It is worth mentioning that during
the selection of the optimal solution from the Pareto front,
we assigned a slightly higher weight to the CC objective.
This allows NSGA-III to achieve comparable performance to
MSPQR but at the expense of information quality. Regarding
the other baselines, their performance is similar up to ten
sensors. However, as the number of sensors increases, the
nonconsideration of CC leads to an increase in NCC. This
indicates that MSPQR aims to find the balance between the
reconstruction quality and CC whereas the other baselines,
except NSGA-III, are solely concerned with the information
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Fig. 8. Placement results with an increasing sensor range.

quality resulting in higher CCs. It is clear that MSPQR is able
to better identify sensor locations that are both information and
communication efficient compared to the baselines.

Fig. 8 summarizes the performance of MSPQR and the
impact of sensor range on reconstruction error. The num-
ber of gateways and sensing range affects the CC, which
consequently influences the models’ reconstruction ability.
Therefore, we performed a series of experiments varying the
number of gateways and sensing range, and the obtained
results are presented in Fig. 8. The results shown in this fig-
ure were obtained from an average of ten trials. The sensor
placement model is able to reconstruct the spatiotemporal sig-
nal given the limited number of measurements. The sharp rise
in reconstruction error, especially when the sensor’s range is
relatively shorter (between 2 and 3.5 km), may seem coun-
terintuitive. However, when combined with the fact that the
network resulting from this configuration involves the most
high-cost sensors, 31 and 28 for the 2 and 3.5-km range,
respectively. When the network contains more high-cost sen-
sors, the selected sensors are pushed out of the regions of high
cost. This allows the model to keep the CC low at the expense
of increased reconstruction error. The method achieves the
best reconstruction accuracy for spatiotemporal signal recon-
struction for configuration in which the sensor range is set
to 6.5 km. Overall, the network resulting after the sensor
placement contains 33%–50% fewer gateways.

As mentioned briefly in Section III-C, the type of cost
used to characterize the cost associated with each sensor loca-
tion can degrade or enhance the performance of the deployed
network. Depending upon the application and size of the area
to be monitored, different cost metrics could yield superior
results. In order to study the influence of the type of cost
on network performance and to identify the settings in which
NCC yields better results than GTC and vice versa, we per-
form some experiments and report the results in Fig. 9. In
network configurations with sensors having a limited range
and, thus, being closer to the gateways, GTC outperforms NCC
and results in sensor locations that are more informative about
the water quality as shown in Fig. 9(a). Networks involving
sensors within the sensing range between 500–4000 m detect
a higher number of micropollutants with GTC than NCC.

However, when the cost function weight is increased (which
means the distance between the sensors and gateways becomes
larger), sensors are gradually pushed out of the regions of
high cost. This allows the total cost to be lowered at the
expense of reducing reconstruction accuracy [Fig. 9(b)]. NCC,
on the other hand, is oblivious to the distance between the
sensors and gateways and is only concerned with the sensor’s
ability to transmit data successfully. Therefore, the network’s
performance involving high-range sensors is not affected as
much as it is for GTC. As evident from both Fig. 9(a) and (b),
NCC is able to achieve similar or better performance when the
sensor range is between 6500–9500 m than GTC.

2) Gateway Placement: Fig. 10(a) shows the NPV results,
calculated from the simulation of 30 sensors which were
assigned the highest scores by the sensor placement module.
The number of sensors is progressively reduced in order to
observe the performance effect of taking as few sensors as pos-
sible. Results are also obtained for different signal ranges to
further observe the effect of distance on the performance. The
simulation environment follows the EU regulations, which are
determined by the European Telecommunications Standards
Institute (ETSI) for the LoRaWAN duty-cycle limitations for
the 868.0–868.6-MHz sub-bands and sets the duty-cycle limit
as 1% [63], [64]. Since sensor communication will rely on a
private ad-hoc network, we do not consider fair use policies.
From the results, it can be seen that when the signal range
is 1 km, all of the simulation results show a linear drop in
performance as the number of sensors is decreased. However,
as the signal range increases, while the overall performance
drops for all scenarios, the best results are achieved by picking
the top ten sensors. The reason is that extending signal range
causes more interference between packets transmission with
a consequent increase in retransmission attempts. Moreover,
additional sensors also cause interferences, so performance
degradation becomes more evident with larger sensor counts.

Another result seen in Fig. 10(b) is the average time spent
per successful packet transmission. Intuitively, when the signal
range gets shorter, the time spent to transmit a packet and
receive its ACK also decreases. Following from NPV result,
when the distance is 1 km, all of the sensors nearly spend the
same amount of time for the transmission process. However, as
the signal distance increases, using a high number of sensors
extend the successful packet transmission time since failure
repetitions and duty-cycle limitations affect the performance.

3) Energy Optimization: We compare energy optimization
(GENETIC) with the baselines analyzed in previous phases,
namely, RAND, MSQPR, QR, GPMI, GP-EN, and NSGA-III.
Also, we present the result of E(P) for MAX-NP, i.e., the
placement allowing detection of most micropollutants com-
puted in the previous GENS phases, to demonstrate that GENS
is capable of achieving energy savings without losing its sens-
ing capability. Results in Fig. 11 show energy consumption
per successful transmission in Joules. We see that energy
optimization allows for reducing energy consumption up to
60% without affecting the number of micropollutants detected.
We also observe that it outperforms the best performing base-
line in terms of energy consumption, MSPQR, by around 10%.
Results indicate that by just tuning gateway ranges, we can
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Fig. 9. Comparison between NCC and GTC. (a) Impact on number of MPs detected. (b) Impact on MSE.

Fig. 10. Results obtained from simulating the designed sensor-gateway topology in NS-3 network simulator for top N sensors. (a) NPV. (b) Average round
trip time.

Fig. 11. Average E(P) per successful transmission.

achieve substantial energy improvement, which is of capital
importance in low-energy scenarios where GENS operates.

VI. CONCLUSION

In this work, we study the multinode sensor placement
problem, i.e., given a set of probable sensor locations, deter-
mine a set of sensor locations that are both information and
communication efficient. Once optimal sensor locations are
found, place a minimum number of gateway sensors to main-
tain the global connectivity such that the resulting network
of sensors is low cost and energy efficient. Our study is moti-
vated by an important class of WSNs, in which IoT nodes that
are responsible for measuring the environmental parameters
(e.g., pH, turbidity, etc., in the case of water quality monitor-
ing) required to monitor the environment are connected with
the gateway through LoRaWAN technology in order to trans-
fer the collected data to a base station or a processing center
to store or further process the data.

We propose the GENS framework, which is comprised
of a simulation-based gateway placement module, a QR
decomposition-based sensor placement module, and a genetic
algorithm-based energy optimization module. Extensive exper-
iments subject to real-world water quality data from Ergene
River, Turkey, demonstrate superior performance compared to
state-of-the-art baselines in terms of information quality, com-
munication capacity, and energy efficiency. The contributions
in this work will be implemented in practice within the scope
of the SWAIN project, which aims to develop an IoT- and
AI-driven early warning system for pollutants in European
rivers.
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