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Abstract

The increasing growth of data volume, and the consequent explosion in demand for computational power, are affecting scientific
computing, as shown by the rise of extreme data scientific workflows. As the need for computing power increases, quantum
computing has been proposed as a way to deliver it. It may provide significant theoretical speedups for many scientific applications
(i.e., molecular dynamics, quantum chemistry, combinatorial optimization, and machine learning). Therefore, integrating quantum
computers into the computing continuum constitutes a promising way to speed up scientific computation. However, the scientific
computing community still lacks the necessary tools and expertise to fully harness the power of quantum computers in the execution
of complex applications such as scientific workflows. In this work, we describe the main characteristics of quantum computing and
its main benefits for scientific applications, then we formalize hybrid quantum-classic workflows, explore how to identify quantum
components and map them onto resources. We demonstrate concepts on a real use case and define a software architecture for a
hybrid workflow management system.

1. Introduction

Scientific computing is a branch of computer science span-
ning different disciplines (i.e., biology, chemistry, engineering),
whose goal is the development of standardized and accurate
simulations of different phenomena. Scientific computation is
typically modeled by scientific workflows, whose execution is
managed by Workflow Management Systems (WMSs) (e.g.,
Pegasus [1], ASKALON [2], Airflow [3]). The importance
of scientific workflows has been proven by the Nobel-Prize-
winning research on gravitational waves, which employed LIGO
data analysis workflows managed by Pegasus WMS1 [4], and
their broad applicability to critical fields [5] such as drug de-
sign [6], material sciences [7], and simulations of the spread
of Covid-19 [8]. The increasing complexity of scientific work-
flows calls for increasing computing power, which is provided
by HPC clusters [9].

Current HPC systems are faced with the end of Moore’s
law [10]. This means that we cannot increase the comput-
ing power at the same rate as before. Consequently, HPC re-
searchers are considering alternative forms of computing to sat-
isfy the increasing demands of scientific applications, enabling
the transition to Post-Moore scientific computing [11].

In the landscape of Post-Moore computing, quantum com-
puting promises substantial performance improvement [12, 13].
Quantum computing can increase application performance, due
to the proven theoretical speedup for different scientific prob-
lems [14, 15] and its native modeling of many scientific phe-
nomena [16]. However, despite the theoretical speedup, the cur-

1Nobel Prize-winning discovery on gravitational waves came about with
contributions from USC scientists

rent state-of-the-art hardware is bound by the following short-
comings (1) limited availability of hybrid resources, (2) suscep-
tibility of qubits to noise and errors in the Noisy Intermediate-
Scale Quantum (NISQ) devices [17, 18, 19], (3) limited techni-
cal capabilities and engineering shortcomings at the hardware
level: several requirements, such as highly-controllable qubits
(high-fidelity state preparation and qubit register initialization),
large counts of quantum gates (for e.g. deeper quantum cir-
cuits have higher CNOT (controlled-NOT) counts, which con-
tribute to larger error rates as compared to single-qubit gates)
operating within the coherence limits of the qubits (for e.g.
shorter gate times and efficiency), and considerably large cir-
cuit depths (starting from qubit initialization to the final mea-
surement). In order to run quantum algorithms (cryptosystems-
based algorithms, such as Shor’s integer factorization algorithm
for breaking the RSA-2048 scheme [20]) require large-scale
logical qubit devices or alternatively physical qubits and quan-
tum gates ranging between thousands to millions [21], and (4)
challenges in suppressing errors, for e.g. protecting entangle-
ment between logical qubits [22] (fault-tolerant quantum com-
putation) arising due to the lack of fault-tolerant logical algo-
rithms/quantum error correction (QEC) schemes at the experi-
mental level.

A broad category of workflows tasks can be propelled by
utilizing quantum processors. These range from (a) accelerators
that are interoperable with classical architechtures, resulting in
hybrid quantum-classical systems [23] or neuromorphic archi-
tectures [24], (b) stochastic and probabilistic sampling meth-
ods such as Monte Carlo (MC) estimation, (c) Programmable
array of qubits, for synthetic simulation of other quantum sys-
tems, also known as quantum simulators, e.g., quantum phases
of matter and critical dynamics of many-body systems [25, 26].
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In the field of gate-based NISQ, the most influential paradigm
subclass of hybrid models are the Variational Quantum Algo-
rithms (VQAs) [27], where classic and quantum hardware are
tightly copuled and cooperate in the achievement of a specific
task. VQAs are turning out to be one of the much anticipated
workhorses in the hybrid computation arena. These include
fluid dynamics, quantum chemistry simulations, for e.g., ac-
curate calculations of electronic structure using Hartree-Fock
methods [28]. Molecular dynamics (MD) is another highly suit-
able usecase, for e.g., simulating weakly bound, coarse-grained
intermolecular interactions and groundstate determination [29].

In this work, we investigate the problem of executing scien-
tific workflows on hybrid quantum-classical ecosystems. First,
we identify and formalize the main actors involved in the pro-
cess. Based on our model, we design a hybrid quantum-classic
workflow starting from a classic molecular dynamics workflow
designed for Pegasus WMS. Then, we provide an idea of how to
allow the execution of scientific workflows on hybrid quantum-
classic systems and identify challenges and possible solutions.
Finally, we provide an outlook on the field and identify possible
trends for future research in the area.

We focus on scientific applications, which provide major
opportunities for quantum modeling and quantum speedup [23].
Also, we consider Pegasus [1], a well-known WMS, as the ref-
erence architecture for WMSs.

The paper is organized as follows: first, we analyze re-
lated work in Section 2, then we provide the theoretical founda-
tions of our work in Section 3 (Appendixes provide additional
background in quantum computing). In Section 4, we provide
the definition of hybrid quantum-classic workflows and how
to transform a classic workflow into a hybrid quantum-classic
workflows. In Section 5, we describe our molecular dynamics
simulation use case as a running example of the transformation
from classic to hybrid classic-quantum workflows. We then de-
scribe our vision of hybrid workflow execution in Section 6,
while in Section 7 we identify the challenges that must be tack-
led to enable it. Finally, we conclude our paper in Section 8.

2. Related Work

Quantum computing has been first theorized by Feynman [30].
Advantages and ideas for quantum supremacy over supercon-
ducting qubits are described in [31], while [32] describes the
circuit-based model of computation. Similarly, [33] focuses on
ion-traps, while [34] describes D-Wave quantum annealers.

In [35], a first study on how to transform classic workflows
into hybrid classic/quantum workflows is performed. In partic-
ular, it focuses on machine learning applications [36] and also
describes methods for the identification of quantum candidates
and splitting scientific applications between classic and quan-
tum hardware. Applications of quantum computing to scientific
applications can be found in many domains, ranging from drug
design [37], molecular dynamics [38], financial modelling [39],
manufacturing industry [40], linear optimization [41], and health-
care [42]. In the above examples, scientific workflows are not
considered.

VQAs, one of the typical applications of hybrid classic-
quantum systems, are described in [43]. In [44], different ap-
plications of VQAs are described. Still in the context of vari-
ational quantum algorithms, [45] focuses on photonic quan-
tum platforms, while [46, 47] focus on the variational quantum
eigensolver, that is a common task in scientific computations.
Applications of VQAs can be found in different scientific appli-
cations, such as molecular dynamics [38], accelerating machine
learning workloads [15] and combinatorial optimization [43].
However, few works address the integration of VQAs in scien-
tific workflows.

Efforts in standardizing hybrid applications are performed
also from a software engineering perspective. In [48], a survey
about the state of the art in quantum software engineering is
performed. Works like [49] focus on the software development
cycle for quantum applications. Other approaches [50, 51] fo-
cus on automatic synthesis of quantum programs.

Classical workflow management systems such as Pegasus,
ASKALON, and DagsHub2 are described respectively in [52,
2]. Execution of workflows in hyper-heterogeneous architec-
tures is described in [53]. Also, [54] proposes a characteriza-
tion of workflow management systems for data-intensive ap-
plications. Support for quantum workflow is provided in tools
such as Orquestra [55] and Covalent [56]. In this work, we
provide guidelines on how to adapt existing classical scientific
workflows into hybrid quantum-classical scientific workflows
and how to extend existing classical WMS to integrate both
quantum and classical hardware.

We extend the outlined works by focusing on the integra-
tion of quantum machines in the execution of HPC applications.
We generalize the concept of hybrid quantum-classical work-
flows, defining different execution models for hybrid quantum-
classical applications and validating our findings on a real-world
molecular dynamics simulation workflow. Based on our find-
ings, we identify open challenges and possible solutions for the
integration of quantum devices in HPC applications.

3. Background

3.1. Scientific Workflows

Scientific Applications in different domains (i.e., finance,
biology, chemistry, engineering) can be decomposed in elemen-
tary tasks (i.e., aggregate data from different sources, average
a set of samples, apply a method to a specific dataset). Tasks
can be combined into workflows, represented as directed acyclic
graphs (DAGs) [52, 2, 57] where nodes represent the tasks and
edges model data and control dependencies between tasks.

Definition 3.1 (Scientific Workflows). A workflow W can be
formally defined as a DAG W = (T, E), such that T is a set of
tasks and E the set of edges, with E ⊂ T × T .

Workflows modelling scientific applications are called sci-
entific workflows. Workflows and tasks can be stored in public

2https://dagshub.com/
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repositories (i.e., Pegasus workflow gallery3), allowing re-use
of validated code, repeatability of simulation, (possibility to
easily repeat the setup and execution of a simulation), which
increases confidence in simulation’s results, and reproducibil-
ity of computation (possibility to reproduce and verify results
of computation), creating opportunity for new insights and re-
ducing measurements errors. Also, workflows are fundamental
for the development of standardized, robust, and accurate sim-
ulations of different phenomena.

3.2. Workflow Management Systems

Execution of scientific workflows on HPC infrastructures
requires different software layers, to enable (1) scheduling of
workflow tasks onto different computing resources, (2) man-
agement of data, including intermediate data products (either
streaming data, or scientific datasets), (3) interoperation be-
tween different heterogeneous resources (e.g., Cloud/Edge nodes,
academic clusters), and (4) fault tolerance (e.g., checkpointing
of execution, re-execution of tasks).

3.3. Quantum Computing

Recent years have seen a major boom in the areas of quan-
tum information processing and quantum technologies. The
huge surge in academic interest and industrial investment in
quantum happened more or less after the seminal publication by
Google Inc. on Quantum supremacy using a programmable
superconducting processor [31]. Along with neuromorphic com-
puting architectures, quantum computation, and quantum sim-
ulation have emerged as some of the most promising paradigms
in alternative computing architectures. Multiple quantum plat-
forms based on superconducting qubits like the IBMQ univer-
sal quantum computer [58], programmable atomic arrays [26],
trapped-ion quantum computers [33], D-Wave 2000Q and 5000Q
quantum annealers [34] exist today with the promise of accel-
erating a wide range of problems that would typically be im-
possible to solve or simulate on a classical (hardware and soft-
ware) computers. Some of these include Shor’s groundbreaking
integer factorization algorithm [20] offering superpolynomial
speedup, Harrow-Hassidim-Lloyd (HHL) algorithm for solving
a large system of sparse matrices with exponential speedup [41],
and accelerated linear algebra computations like matrix mul-
tiplication [59]. Other highly relevant domains include com-
binatorial optimization (NP-hard problems), finance, machine
learning [60, 61, 62], battery design, new novel molecule and
drug discovery, quantum materials, grid power management to
name a few.

Although the potential to accelerate time to solution using
quantum machines is huge, quantum computation is still in its
very beginning, suffering from many hardware and software
imperfections. Currently, the technology for initial state prepa-
ration of quantum registers, precise qubit control, high-fidelity
quantum gate preparation, and measurement of qubits involves

3https://pegasus.isi.edu/workflow_gallery/

a high level of uncertainty. These can be traced mainly to ultra-
precise engineering bottlenecks and environmental errors in-
duced by decoherence. For example, the measured fidelity of
2 million samples on the 53-qubit Sycamore chip fabricated by
Google Inc. [31, 63], described in terms of the linear cross-
entropy benchmark (XEB), is only at a level of 0.2 % [31, 13].
This does not keep up with the performance of classical simu-
lators, which can be exponentially complex, but provide higher
fidelity compared to quantum devices.

3.4. Hybrid Quantum-Classic Systems

Figure 1: Schematics of hybrid quantum-classical systems.

Hybrid quantum-classic systems define a new class of com-
puting paradigms combining the computing capacities of near-
term noisy quantum processors and classical co-processors work-
ing in conjunction to solve large-scale scientific problems. The
main advantage of using this approach is that it allows the ex-
ploitation of the many strengths of classic processors for multi-
ple tasks (e.g., convex optimization, error correction, data pre/post-
processing) while at the same time utilizing the capabilities
of quantum machines for other specific tasks [23]. The mo-
tivation behind hybrid ecosystems is to orchestrate quantum
algorithms with classical routines which are more suited and
efficient on classical processors (for e.g. classical optimizers
for back-propagation computation, data entry, graphics, data
pre/post-processing etc.). This allows for the distribution of
larger workloads to classical devices, thereby mitigating the
burden on error-prone quantum hardware, which is leveraged
for specialized and targetted tasks (for instance, quantum phase
estimation (QPE), cryptographic schemes, operator quantum
expectation value computation, optimization, etc.). This strate-
gic integration yields a substantial reduction in the utilization
time of the quantum resources, enhancing the efficacy of task
executions. Figure 1 describes the hybrid system pipeline: In
step 1, data is pre-processed on the classic system for further en-
coding onto the quantum registers; in Step 2, the quantum state
is prepared based on preprocessed input (typically done using
data encoding schemes), Step 3, manipulates a quantum circuit;
in step 4, the quantum state is measured and post-processed in
step 5.

Data Encoding For Quantum Devices: Classical data in
its raw form cannot be processed on quantum devices. De-
sired initial quantum state preparation necessitates converting

3
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and encoding the input classical vector (tensor) data in a suit-
able representation as quantum data for embedding, storing the
quantum information in the QPUs, and performing quantum
operations via quantum algorithms. Porting classical data sets
onto quantum devices can be achieved efficiently using mul-
tiple DATA ENCODING schemes [64, 65]. In general, choos-
ing a particular data encoding method depends on the use case
(model/algorithm dependent). Some of the well-known encod-
ing frameworks are (i) Basis Encoding, (ii) qRAM Encoding,
(iii) Angle Encoding, (iv) Amplitude Encoding, etc.

Parametrized Quantum Circuits: Parametrized quantum
circuits (PQCs) or variational circuits are basically quantum al-
gorithms that vary certain variables (real/complex valued vec-
tors) or parameters, often denoted as ϑ. PQCs like any other
quantum circuit consists of, (1) Initialized qubit register (cf.
Appendix B, section(Appendix B.3) with appropriate quantum
state preparation, (2) a quantum circuit with a cascade of quan-
tum logic gates (cf. Appendix C and Appendix D) U(ϑ), pa-
rameterized by a set of parameters ϑ (3) classical optimizers
augmenting the PQCs and, (4) measurements and resets.

Variational Quantum Algorithms (VQAs) are one of the
most important paradigms in hybrid quantum-classical systems
and are prime candidates for quantum advantage. VQAs can
be defined as hybrid quantum-classical algorithms, wherein a
parametrized quantum circuit is iteratively optimized via clas-
sical optimization algorithms. The schematic diagram Figure 1
shows that the black box performs VQA executions. The black
box can be decomposed into two major blocks, namely the
quantum block and a classical block, interconnected by an un-
derlying adaptive feedback-loop mechanism.

• Quantum System: A Noisy-Intermediate-Scale-Quantum
(NISQ) device that at the low level prepares highly entan-
gled parameterized quantum states and performs
quantum-subroutines using PQCs (variational circuits).
For e.g. this block executes a forwardpass by computing
the quantum expectation value of certain physical observ-
ables
/operators (matrices) and the measured quantum state yields
the corresponding parameter values which are stored in
the memory at every intermediate step.

• Classic System: A classical optimizer which receives
the quantum outputted parameters and executes iterative
optimization, (for e.g. gradient descent) by optimizing
the cost (loss) function landscape. Calling gradients func-
tions for parameter ϑi update is done using
back-propagation (accumulated gradients). The data flow
in this stage corresponds to passing the updated parame-
ters loop back into quantum circuit for further quantum
function calls (gate operations) and initiate subsequent
control flow steps.

Other Hybrid Algorithm Frameworks Apart from VQAs,
there are other classes of hybrid algorithms, typically analog-
based, that leverage existing quantum architectures. These in-
clude hybrid forms of quantum annealing, such as hybrid solvers
in D-WAVE machines for solving arbitrary structure QUBO

problems (quadratic models, such as Binary Quadratic Mod-
els (BQMs), Constrained Quadratic Models (CQMs) or Uncon-
strained Quadratic Models, Discrete Quadratic Models (DQMs))
etc)4. Frameworks such as iterated adiabatic reverse annealing
which are quantum annealing-based techniques embedded in a
classical loop have also been useful in tackling multiple sci-
entific and industrial use cases [66]. Some more ongoing de-
velopments in the hybrid algorithms sectors are Quantum Neu-
romorphic Computing, wherein brain-inspired classical neural
network architectures are conjoined with quantum hardware to
offer computational advantage [24].

4. From Classic to Hybrid Workflows

In this section, we provide the main definitions of what is
needed to enable our vision of hybrid workflow execution, fo-
cusing on hybrid workflows and then on hybrid WMSs.

4.1. Hybrid Workflows

We extend the definition of classic workflows by adding a
set of quantum tasks Q to Definition 3.1. Quantum tasks q ∈ Q
that can be executed only by quantum machines. Also, quantum
tasks in our workflow definition are functionally equivalent [67]
to some tasks in T . Because of the undecidability of the pro-
gram equivalence problem [67], we assume that the user defines
a mapping function f : T 7→ Q that maps a classic task into its
quantum equivalent. Multiple quantum tasks can be available
for different classic tasks: for example, for the classic task of
computing a matrix eigenvalue, either HHL [68] or VQE [44]
algorithm can be used, depending on available quantum hard-
ware. As a consequence, f is surjective, but not injective. We
define quantum candidates tasks as tasks for which there is a
quantum task, namely,

∀t ∈ T : f (t) , ∅, t is a quantum candidate. (1)

We define the set T ′ as the set of quantum candidates. We as-
sume that T ′ ⊆ T . If a task t′ is a quantum candidate, we add
a decision node between t′ predecessor and connect it to t′ and
all other tasks q ∈ f (t′). Different execution paths will be exe-
cuted according to conditions or specified by the decision node.
An example of a condition could be, for example, to execute
the quantum task if quantum hardware is available. The set of
decision nodes is defined as D. Figure 2 provides an example
of how to transform a classic workflow into a hybrid workflow.

We distinguish three types of quantum tasks, that are de-
scribed in Figure 3 together with their control and data flow:
circuit execution, task execution (Figure 3b, and hybrid execu-
tion. A circuit execution (Figure 3a) represents a single execu-
tion of a quantum circuit, where a single sampling of the result
of execution is performed. Examples of this computation can
be simple algorithms, such as the simulation of a coin toss. The
result of a task execution, instead, is the most frequent result

4https://docs.dwavesys.com/docs/latest/doc_leap_hybrid.

html
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Figure 2: Example of Transformation into Hybrid Workflow

(a) Circuit Execution (b) Task Execution

(c) Hybrid Execution

Figure 3: Types of Quantum Tasks.

among s samplings of the execution of a quantum circuit and
represents the execution of typical quantum algorithms such as
Grover and Deutsch-Jozsa. This model can also be applied to
the quantum subroutines of hybrid algorithms, such as Shor’s
algorithm [20]. Finally, a hybrid execution (Figure 3c) repre-
sents computations involving interaction between classic and
quantum hardware, similar to what happens with Variational
Quantum Algorithms [44], where a quantum state modeling
the solution to a specific problem is modeled as a parametrized

quantum circuit with a vector of parameters Θ⃗, whose optimal
values are found by optimizers running on classic hardware. Fi-
nally, we define hybrid workflows as follows:

Definition 4.1 (Hybrid Workflows). We define hybrid work-
flows as W = (T,Q, E,D, f ), where:

• T is the set of classic tasks, where T ′ ⊂ T is the set of
quantum candidates;

• Q is the set of quantum tasks;

5
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• D is the set of decision nodes, where |D| = |T ′|;

• E ⊂ (T ∪ Q ∪ D) × (T ∪ Q ∪ D) is the set of edges;

• f is the function mapping tasks in T ′ in one or more
quantum tasks in Q.

5. A Molecular Dynamics Use Case

MD is one of the most popular scientific applications exe-
cuted on modern HPC systems. MD simulations reproduce the
accurate dynamics (time evolution of molecular systems) at a
given pressure and temperature by iteratively computing inter-
atomic forces and atom dynamics over short time steps. The
trajectories generated by these simulations enable a better un-
derstanding of conformations and molecular mechanisms. In
particular, a trajectory is a series of frames, i.e. sets of atomic
coordinates stored at fixed infinitesimal time steps [69].

The quantum adaptation of MD applications builds over a
similar pipeline as put forth in the recent works of [70, 69];
dealing with in-situ and in-transit analytics of MD simulations
on state-of-the-art supercomputers. Our hybrid workflows can
be efficiently integrated with the in-situ and in-transit analysis
of the data and meta-data generated by MD simulations.

Here, we provide a high-level description of the hybrid work-
flows pertaining to the aforementioned use case. The motiva-
tion to focus on this particular use case is as follows: (a) MD
simulations/analyses are a very active field in the distributed
deep learning and HPC scientific computing communities with
widespread applications to industry. (b) It consists of a purely
quantum-based algorithm stack (see Section 5.2) followed by
an additional variational hybrid algorithm stacks (VQEs) on
the quantum algorithm returned output (see Section 5.2). (c)
It is elusive to find applications such as in [70, 69], that offer
one-to-one mapping of the entire classical problem (two major
compute-intensive tasks) on a hybrid ecosystem and capture the
essence of the hybrid workflow pipeline.

Our initial observation was that specific tasks of the in-situ
MD simulations, for e.g., collective variables (CVs) generation,
can be leveraged using state-of-the-art quantum algorithms and
quantum subroutines instead of merely parallelizing workloads
using GPU accelerator facilities. Just in the way GPUs, TPUs,
and FPGAs serve as indispensable tools for accelerated lin-
ear algebra for variable dimension tensor calculations (matrix-
matrix, matrix-vector, vector-vector multiply), the same logic
also carries over to devices based on quantum architectures.
It is clear from the current status of quantum computers that
a complete MD application cannot be executed on the rudi-
mentary NISQ quantum hardware. Thus, we need to identify
the best-suited parts (subspaces) of the workflows that can be
accelerated multifold using quantum processing units (QPUs).
Moreover, the utilization time of quantum devices should be
kept low-key, in order to prevent noise-induced quantum errors
and imperfections of quantum hardware.

Figure 4a visualizes the target MD application with quan-
tum candidates highlighted. After reading input from the user,

the application reads a trajectory file, which provides informa-
tion about the molecule structure, and identifies the atom seg-
ments that have to be considered in our calculations. For each
pair of atom segments, the application performs parallel com-
putations to calculate BIJ matrices. The CV that we will use
in this work is the Largest Eigenvalue of the Bipartite Matrix
(LEBM). The bipartite matrices are used as an input for the
LEBM calculation. At the end of this process, results for differ-
ent BIJ are collected and analyzed.

Starting from classical MD workflow (Figure 4a), by ap-
plying the procedure described in Figure 2 we obtain the re-
sulting Hybrid Quantum-Classical workflow described in Fig-
ure 4b. These quantum-classical (hybrid) counterparts of the
purely classical MD workflows were first conducted and bench-
marked on a 5-qubit IBM Q devices [38]. In the next sections,
we describe each step in detail.

5.1. Identification of Quantum candidates

Strategies for pinning down suitable quantum candidates in
a use case is to a large extent problem/model/system dependent.
In a hybrid workflow environment, this basically boils down to
choosing from a limited set of available quantum and hybrid
quantum-classical algorithms that could potentially outperform
known classical algorithms.

In the MD simulation landscape, compute-intensive data
analysis of time-evolving molecular systems can be systemati-
cally solved by designing a suite of collective variables (CVs) [70].
Collective variables (CVs) are a set of statistical metrics that
capture relevant molecular motions enabling efficient monitor-
ing of rare events in huge molecular structures and chains [71].
Technically, CVs can also be defined as a function of the atomic
coordinates in one frame that helps to reconstruct the free-energy
surface for enhanced sampling. Since trajectories are reduced to
time series of a small number of such CVs, simulated molecular
processes are much more amenable to interpretation and further
analysis. Ideally, a CV can be as simple as the distance between
two atoms or can involve complex mathematical operations on
a large number of atoms. For example, in the domain of Meta-
dynamics [72], scientists use well-chosen collective variables
(CVs) to capture important molecular motions in the region of
interest.

The works in [70, 69] demonstrated that collective variables
could be extracted using Euclidean distance matrices and bipar-
tite distance matrices.

The Euclidean distance matrix D and the bipartite distance
matrix BIJ have three fundamental properties: they are symmet-
ric, diagonal elements are zeros, and off-diagonal elements are
strictly positive [70]. After calculating matrices D and B, we
focus on calculating the molecular system’s CVs.

Potential quantum candidates for MD-based experiments
were chosen in accordance to:

(i) Replacing classical routines that are compute-intensive
with equivalent quantum algorithms that guarantee a theoreti-
cal speedup. A task t ∈ T is defined as compute-intensive if

6
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(a) Target Classical MD Simulation.

(b) Hybrid MD Simulation.

Figure 4: Hybrid Quantum-Classical MD Simulation.

at least 70% of its execution time is spent in performing float-
ing point operations (i.e., no data staging, I/O, and communica-
tion).

(ii) Capturing the electronic properties and molecular time-
evolution of the system which in turn can be used for efficient
computation of collective variables (CVs),

(iii) Most importantly, whether there exists such a quantum
algorithm and routine, that is available to the user for successful
implementation of the use case. If not, then engineering quan-
tum algorithms/quantum circuits with a considerably shallow
circuit depth, (with a modest qubit register size and quantum
gates crammed into the circuits) such that the problem can be
efficiently simulated on NISQ hardware.

The two classical tasks that exactly satisfy all the aforemen-
tioned requirements in our use case are:

(a) Distance (bipartite) matrix generation between different
Cα atoms in the molecular system (cf. Target Task 1 5.2) for
details), which is calculated using SWAP test;

(b) Calculating target CV corresponding to largest eigen-
values of the bipartite matrices (LEBM) and distance matrices
using hybrid quantum algorithms (cf. Target Task 2 5.2) for de-
tails). We use Variational Quantum Eigensolvers (VQEs) [73]
for eigenvalue estimation.

5.2. Mapping from Classic to Hybrid Workflow
In Figure 4b we show the hybrid workflow resulting from

the transformation of the classic MD workflow depicted in Fig-
ure 4a, following the transformation procedure described in Fig-

ure 2. Since we have two quantum candidates, we add two de-
cision nodes, D0 and D1. Decision nodes are responsible for
selecting target implementation, depending on whether quan-
tum hardware is available, and performing data encoding from
classic to quantum domain. We analyze the implementation of
each algorithm in the next sections, together with the control
and data flow of target hybrid MD simulation.

Target Task 1: Quantum algorithm for distance matrix
generation & computing structural change evolution

It was shown in [74] that quantum computers possess the
power to manipulate large numbers of high-dimensional vec-
tor/tensor datasets. Typically, vector operations involving vec-
tor (tensor) dot products, norms, overlaps, etc., feature in su-
pervised and unsupervised machine-learning tasks. For our MD
analytics use case, CVs described by distance/bipartite matrices
constitute some of the most compute-intensive routines. Clas-
sical algorithms running on classical devices typically require
polynomial time in the number of vectors and the dimension
of the space to solve these tasks. For an N-dimensional vec-
tor space, their time complexity grows linear in N, i.e., O(N).
Quantum computers, on the contrary, can remarkably achieve
this feat in time O(logN), owing to their intrinsic capabilities
to efficiently manipulate high-dimensional vectors embedded in
large tensor product spaces [74].

The reason for this exponential speed-up can be argued as
follows: classical data (typically vectors or tensors), expressed
in terms of N-dimensional complex-valued vectors can be en-
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coded through amplitude encoding onto merely log2(N) qubits,
thus requiring only logarithmic in the size of the classical data-
set. This data stored in a quantum random access memory
(qRAM) whose mapping takes O(log2N) steps [75]. In this con-
verted quantum form, data post-processing can be done using
multiple quantum algorithms like the quantum Fourier trans-
forms [76], matrix inversion methods [41], etc., with time-
complexity O(poly(logN)). Thus, distance estimation and in-
ner product operations between post-processed vectors belong-
ing to N-dimensional vector spaces take merely time O(logN)
[74]. Moreover, as per [77], sampling post-processed vectors
and distance or inner-product determination between these post-
processed vectors is an exponentially hard task.

Inspired by the aforementioned (theoretical) exponential
quantum speedup, we make use of quantum algorithms to gen-
erate the proxies for modeling molecular structure time-evolution,
i.e., Euclidean distance matrices D and bipartite distance matri-
ces BIJ. These can be efficiently generated via a quantum sub-
routine called the SWAP (also called C-SWAP) test.

The high-level workflow description of the Target Task 1
with quantum integrated architectures is depicted in Figure (5).
We can see that its execution resembles the control and data
flow of a job execution, as shown in Figure 3b. Typically, it
requires manual re-direction of tasks onto quantum devices for
generating distance matrices. The proposed workflow schemat-
ics is a quantum adaptation (counterpart) of the in situ or in
transit integrated classical workflows used for molecular dy-
namics (MD) analytics, originally introduced in [78].

Target Task 2: Largest Eigenvalues of Bipartite Matrix
Hybrid Quantum-Classical algorithm for Eigenvalue Determi-
nation: It was first posited in the works of Johnston et al. [79,
78] that the measurement of largest eigenvalues of the bipartite
matrices BIJ or the Euclidean distance matrices DI can serve as
collective variables (CVs) and suffices for monitoring structural
changes in the conformation of I relative to J. Later, this idea
was extrapolated in [69, 70], wherein the largest eigenvalues of
each one of these matrices were computed without retaining
other frames in memory. Nevertheless, with ever-increasing
molecule sizes, numerical linear algebra calculations such as
eigenvalue and eigenspectrum (typically using numerical diag-
onalization techniques) or singular value decomposition (SVD)
computations may fall short due to the saturating computational
power of classical (HPC) systems.

Hybrid quantum-classical systems offer a possibility to al-
leviate the aforementioned bottleneck by semi-utilizing quan-
tum devices as accelerators orchestrated by classical optimiza-
tion protocols for parameter updates. The variational quantum
eigensolver (VQE) [45, 47, 43] form an important subset of
the variational quantum algorithms (VQAs), that computes the
eigenvalues of typically large Hermitian matrices Â (see Ap-
pendix F) using the Rayleigh-Ritz variational approach [80].
This heuristic algorithm was developed with a strong focus on
solving the ground state of many-body interacting quantum sys-
tems (strongly correlated) using iterative numerical optimiza-
tion. Multiple highly complex systems appearing in quantum
chemistry remain in-tractable even for the capabilities of cur-

rent leading-edge high-performance computing (HPC) systems.
Augmenting NISQ devices or the near-future quantum devices
to operational support given by supercomputers increases the
hopes for a faster convergence to solutions for such large-scale
chemistry target applications based on quantum simulations.
[44, 81, 82]

The LEBM computation of the target matrices BIJ or D falls
as a fitting use-case for the variational quantum eigensolver en-
gine. The machinery is described in detail in Appendix F. Ini-
tially one begins with an ansatz wavefunction (trial state) out-
putted from a parameterized quantum circuit. The core princi-
ple operating under the hood is iteratively updating the wave-
function parameter whilst minimizing the cost function Eq.(2)
C(θ) by employing a classical optimizer. This cost function is
typically chosen to be the quantum expectation value of a given
hermitian matrix with respect to the parametrized wavefunc-
tion |Ψ(θ)⟩. The input to the VQE engine is either the C-SWAP
quantum-subroutine generated bipartite matrix or generated bi-
partite matrices generated using classical machines. (which is
Pauli encoded, since it is a Hermitian in nature cf. Appendix E),
the corresponding function to minimize reads,

ϑ∗ = arg min
θ

C(θ) = ⟨ψ(θ)| B̂IJ |ψ(θ)⟩ , (2)

The goal is to approach the sets of LEBM as close to the actual

values, i.e., the values calculated on a classic machine. How-
ever, since VQE performs iterative optimization of a cost func-
tion C (Equation 2), it can approach the exact value only after
multiple executions or iterative loops [44]. To this end, we de-
fine the error function that we use to quantify the VQE bench-
marks.

Our quantum-enhanced MD simulations were conducted on
a 5 qubit IBMQ hardware. The maximum permissible matrix
dimension possible with our requested quantum resources was
a restrictive 16×16 dimensional distance matrix blocks EIJ that
feature in the bipartite matrix. The corresponding VQE scien-
tific workflow for molecular-dynamics (MD) target applications
(cf. Appendix F for detailed mathematical description) is de-
picted in Figure 6, which resembles hybrid execution on Fig-
ure 3c.

Cost Function Optimization. For the B̂IJ, we define its classic
LEBM Λc(BIJ) and its quantum counterpart calculated using
VQE using a specific initially chosen hyperparameter setting
Π as Λvqe(B̂IJ,Π). We construct a figure of merit to compare
VQE results obtained from different architectures, quantified
by a Mean Square Error (MSE). For a set of matrices, B̂ =
{B0

IJ , B
1
IJ , . . . , B

n
IJ}, we define

Err(B̂,Π) =
∑

i∈[0,|B̂|]

(Λc(Bi
IJ) − Λvqe(B̂i

IJ,Π))2

|B̂|
(3)

as the MSE between the classic and quantum eigenvalues, cal-
culated using hyperparameters Π.
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Figure 5: Quantum integrated MD workflows for distance matrix computations.

Figure 6: Quantum workflows for variational quantum eigensolvers

Data-Driven Hyperparameters Selection. It is important to note
that the VQE executions can be largely improved by opting for
different hyperparameter Π tuning schemes that are available
on the IBM Qiskit API. In practice, VQE execution results are
affected by tuning hyperparameters and converge to the opti-
mal value after the user pins down a suitable configuration after
taking into account possible error-mitigation strategies. There-

fore, a grid-search-based algorithm forms an important part of
the so-called data-driven methods which will be used to identify
the most suitable hyperparameters setting. In [38], we describe
a method to select a suitable set of hyperparameters for VQE.

9
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5.3. Generalizing Hybrid WMSs

The rapid progress of quantum facilities has led to a surge in
challenges across various application domains. Consequently,
generalizing the hybrid workflow frameworks to accommodate
diverse applications is necessary. A comprehensive overview is
depicted in Fig. (2), which could encapsulate a broad spectrum
of techniques and be embedded at various stages in a general-
ized hybrid ecosystem. These encompass (a) Hamiltonian sim-
ulation and analog/single ancilla Linear Combination of Uni-
taries (LCU) [83] methodology for ground state preparation, (b)
Graph-based combinatorial optimization employing quantum-
approximate-optimization algorithms (QAOA) [84], (c) Quan-
tum Fourier Transformations (QFT) and Quantum Phase Es-
timation techniques (QPE) as alternatives to Variational Quan-
tum Eigensolvers (VQEs), (d) Classical machine learning (ML)
assisting quantum algorithms [85], (e) Quantum machine learn-
ing (QML) workloads such as quantum support vector machines
(QSVMs) [86], Quantum Kernel-based ML (QKE) methods [15,
87], and (f) Simulations of quantum Hamiltonians for determin-
ing electronic state energies [88, 37]. The following sections
build over this generalized scheme.

5.3.1. Hybrid Data/Control Flow

Figure 7: Decision Node.

In a Hybrid Workflow Engine (HWE), characterizing the
control and data flows becomes highly relevant. Since the con-
trol flows (defining execution paths) and data flows (informa-
tion movement through computations) are highly interlinked,
it is necessary to demarcate and differentiate these two flows
systematically. In such intertwined workload sharing environ-
ments arising in variational quantum algorithms between
quantum-classical components, WMSs become highly non-trivial.
Here we relate/map the conducted quantum MD computational
experiments to the formally defined hybrid workflows from Sec-
tion 4.1.

The data and the control flow are handled by the decision
nodes, whose flow is described in Figure 7. The goal of decision
nodes is to manage the control and data flow of the hybrid work-
flow, based on pre-defined conditions for execution on quan-
tum hardware. Decision nodes collect data about the available
quantum and classical hardware through the monitoring layer.
Also, available quantum tasks are fetched by the quantum task
repository, following indications provided by annotations. Af-
terward, performance is evaluated for each task on the available

hardware, by applying a specific hardware performance model.
Performance models can be either defined as a single metric,
i.e., quantum volume [89] or total quantum factor [90], or ex-
ploit machine learning-based approaches such as [91]. Based
on the results of the hardware performance models, a specific
condition is evaluated to make a decision. Based on the condi-
tion, the classic or the quantum task is executed. If the quantum
task is executed, classic data has to be encoded into the quan-
tum domain by applying different data encoding methods. After
execution on quantum hardware, post-processing is applied to
mitigate the effects of quantum noise. Finally, the output of the
task, either classic or quantum, can be used by the subsequent
workflow task.

Similar approaches to the selection of quantum tasks have
been proposed. For example, [92] proposes NISQAnalyzer, a
method for selecting the most suitable quantum machine among
a set of available superconducting quantum hardware and Qiskit
implementations, while [93] focuses on the execution of quan-
tum services on Amazon BraKet. In [91], these ideas are fur-
ther explored considering also ion-traps architecture and dif-
ferent programming frameworks. However, different hardware,
for the same algorithm might require different implementations
and different programming models. An example is photon-
ics hardware, where Measurement-Based Quantum Comput-
ing [94] provides better performance [95]. Therefore, we pro-
pose an approach where a joint selection of algorithm imple-
mentation and target quantum hardware is performed.

In the next sections, we analyze control and data flow in
detail.

Control-Flow Modeling for Hybrid Systems. Control-flow mod-
eling deals with deconstructing the order of operations in a
computer program and dictates the sequence in which compu-
tational tasks need to be executed [96]. In the case of hybrid
quantum-classical applications, execution paths can be bifur-
cated into the classical control flow pipeline (pertaining to clas-
sical flows and smaller sub-flows) and quantum control flow
pipeline (related to quantum flows and sub-flows) respectively.

Classical side of quantum computation: Typically, the
classical control flow dependencies involve:

1. Initializing set of variational parameters of the quantum
circuit.

2. Spawning multiple quantum circuits and processes simul-
taneously.

3. Delegating (directing) user-defined quantum tasks Q onto
the quantum processors and controlling the execution or-
der of one or several quantum candidates.

4. Executing classical programs in concert with quantum
routines (e.g., for iterative optimization algorithms).

5. Measurement of quantum states and classical parameter
feedback. Lastly, generating the final output after multi-
ple iterations (checking convergence to solution) and data
post-processing.

Data-Flow Modeling for Hybrid Systems. Data-flow analysis
on the other hand deals with collecting information about the
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possible set of values calculated at various stages in a computer
program and describes the information passage within a work-
flow [96]. Data generation, feature extraction, data transforma-
tion, data storage, and exchange of input and output data within
the workflows are some examples.

Classical Data flow modeling:

1. Preprocessing input classical data, implementing feature
extraction methods on classical datasets, and developing
suitable forms of data encoding schemes for QPU em-
bedding.

2. Postprocessing results after quantum measurements, mit-
igating readout errors and extracting useful information.

Quantum Data flow modeling:

1. Quantum data flows concerns with quantum parallelism
arising due to multi-qubit states |Ψ⟩ ∈ (C2)⊗d within a
quantum register and the flow of entanglement prepared
via controlled gate sequence applications. (for e.g., multi-
QPU interactions and managing multi-QPU communica-
tion). This may be necessary to communicate a compu-
tational state between QPUs or to prepare both registers
in a mutually entangled state. These operations require
the presence of a quantum network, which uses quan-
tum physical systems to communicate quantum states be-
tween registers) [97].

2. Exchanging data within the several spawned quantum cir-
cuits or subparts of the different circuits.

6. Hybrid Workflow Management Systems

6.1. Software Components

In this section, we describe the main software components
that are necessary to enable the execution of tasks into hybrid
quantum-classical systems. The main components are also de-
picted in Figure 8.

Hardware Catalog contains information about available
hardware in underlying hybrid computing systems, including
not only which hardware is available, but also different char-
acteristics (i.e., CPU power, storage capacity, network through-
put). This component is common in many other WMSs, such as
Pegasus [52]. Hardware-specific implementations of the hard-
ware catalog are available in different quantum hardware with
Cloud frontends, i.e., IBM Quantum, Amazon BraKet, Google
Quantum AI, and Azure Quantum. The main difference be-
tween these services is that, while IBM and Google have their
own quantum devices, Amazon provides an interface to access
quantum devices from other vendors, e.g., Rigetti, Quantinuum,
and Pasqal. Azure Quantum, instead, proposes a hybrid solu-
tion, exposing the same interface not only for Microsoft devices
but also for devices of other vendors. The first step towards the
integration of quantum hardware in the hardware catalog would
first of all require the design of APIs to interconnect these ser-
vices with WMS hardware catalog. Existing approaches de-
scribed in [92, 93, 91] are currently not integrated into WMS,

targeting only specific frameworks (e.g., Qiskit and IBM Quan-
tum [92] or Amazon BraKet [93]) or specific hardware, e.g., su-
perconducting and ion-traps [91]. Also, information about the
characteristics of available hardware, also known as quantum
hardware descriptors, should be exposed. Typical descriptors
are a number of available qubits, qubits topology, and error rate.
Moreover, since quantum computers at the time could not be
used concurrently, information about the queueing status should
be exposed. In some cases, such as IBM, also other perfor-
mance metrics that are specific to quantum, i.e., Circuit Layer
Operations per Second (CLOPS) or Quantum Volume [89], can
be exposed. However, such metrics might not be directly appli-
cable to other types of hardware, i.e., from other vendors or re-
lying on different technologies, such as, for example, ion-traps,
photonics, or neutral atoms.

Quantum Task Repository includes the implementation of
different quantum tasks, in different software variants depend-
ing on the available quantum machines. Tasks can be imple-
mented in graphical languages, such as ZX-Calculus [98], dif-
ferent high-level programming frameworks (e.g., Qiskit, Pen-
nyLane, Q#), or in low-level languages such as OpenQASM
(quantum assembler)5. Examples of quantum task repositories
are provided by the IBM Quantum Lab, BraKet git repository6,
Cirq Quantumlib github7, Microsoft Quantum github8. How-
ever, each one of these repositories targets specific frameworks
and devices. A generic quantum task repository should include
implementations for different devices available in the hardware
catalog. Also, each task should be labeled to describe its goal
(i.e., unstructured search, optimization), as well as its input and
output. Compilation of selected tasks will then be performed in
the subsequent transpilation layer.

Classic-Quantum Mapper is responsible for identifying a
mapping of classic tasks into equivalent quantum tasks. This
can be performed by means of code classification [99, 100], us-
ing labels defined in the Quantum Task Repository, or by apply-
ing circuit synthesis methods, such as [51, 50] if no correspond-
ing quantum task is found. Currently, the mapping of quantum
candidates into quantum tasks is performed manually by the
application developer. One could think of exploiting code clas-
sification approaches [99]

Transpilation Layer is responsible for transpile, i.e., adapt-
ing the high-level definition of quantum circuits that define the
quantum tasks in the quantum tasks repository, to the target
quantum architecture. This step is necessary because the defi-
nition of the circuit might not fit the topology of the underlying
architecture. To address this issue, a sequence of operations is
applied to the circuit definition to reorganize qubits and quan-
tum gates. Transpilers are available in different frameworks,
such as Qiskit, PennyLane, and Q#. However, they are mostly
designed for circuit-based quantum computing. Work available
for measurement-based quantum computing [101], that allows
to fully exploit photonics quantum devices is at the moment still

5https://github.com/openqasm/openqasm
6https://github.com/amazon-braket
7https://github.com/quantumlib/Cirq
8https://github.com/microsoft/Quantum
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at the experimental phase. In the future, we should be able to
have universal transpilers, capable of optimizing for different
computational models depending on available quantum hard-
ware.

Hybrid Monitoring Layer is designed to collect data about
the execution of both quantum and classic hardware. On clas-
sic hardware, there are many methods to collect either low-level
metrics about the systems (e.g., CPU, bandwidth) or aggregated
metrics (e.g. reliability), ranging from distributed [102] and
centralized [103] monitoring approaches. To enable monitor-
ing of hybrid quantum-classical systems, the existing monitor-
ing layer provided by existing WMS should be integrated with
API provided by existing quantum framework (i.e., Amazon
BraKet, IBM Quantum, Xanadu) to expose to the workflow de-
veloper the hardware descriptors collected by quantum comput-
ers, described in the hardware catalog. The implementation of
the monitoring service for each provider is related to the under-
lying framework: for example, in IBM Quantum, it is provided
by the runtime service, that allows keeping track of the state of
a submitted quantum job by querying the state of a Job object.
Similar approaches are available on PennyLane and Q#.

Hybrid Intercommunication Layer constitutes the API
that allows communication between quantum and classic hard-
ware. This layer allows data encoding, offloading of data and
computation to quantum hardware, retrieving measurements,
and performing error correction. Currently, such features are
framework-specific and therefore depend on the available API
between each framework and the hardware vendors.

6.2. Hybrid Workflows Execution
Figure 8 summarizes how we envision the execution of hy-

brid workflows. First, the user submits a scientific workflow
using the WMS interface. Workflow tasks are then selected by
the WMS scheduler, based on its scheduling policy. Based on
the workflows annotations, the scheduler knows if the current t
task is a classic or a quantum task. If t is classic, the sched-
uler will select target machine based on (1) task requirements,
(2) availability of hardware resources (based on input hardware
catalog), and (3) task-related cost function, which takes in in-
put task t and machine m and outputs a score, which defines
whether it is convenient to execute t on machine m and it is
used by the scheduler for its decisions. Execution is then per-
formed on the identified machine m, and the results of task t are
forwarded to the user or to the following tasks that require them
as input.

If t is a quantum task, the first thing to do is to verify whether
a quantum target, i.e., an equivalent quantum algorithm for
the classic quantum candidate, is available in WMS quantum
codebase. If no equivalent quantum target is found, the work-
flows continue its execution by scheduling the classic task on
the available classic hardware; otherwise, according to the logic
implemented in the decision node, the WMS can decide either
to (1) select a quantum algorithm among the available quantum
targets, or (2) execute the classic implementation of the task.
In the first case, execution depends on the quantum task type
(as defined in Figure 3b), in the latter, execution proceeds as in
classical workflows.

6.3. Assumptions and Limitations

Description of quantum task repository, as well as transpila-
tion as mapper, are focused on the quantum circuit model, that
is typical of superconducting machines used by the most com-
mon quantum hardware platforms (e.g., IBM Quantum, Ama-
zon BraKet) and also by ion-trapped machines (e.g., AQT).
However, different technologies are available for quantum hard-
ware, such as photonics quantum machines (e.g., Xanadu). While
each circuit can be also executed on photonics hardware, these
machines proved to have the best performance with measurement-
based model [94], therefore circuit synthesis and mapping might
not guarantee the best performance.

Another issue is related to the code classification-based ap-
proach since we assume that there is a label for each classic task
that allows us to map it to its quantum counterpart. As a con-
sequence, this approach is inherently dependent on the source
code corpus that we use to train the model.

Concerning hardware descriptors, we mostly focus on def-
initions provided by IBM Qiskit, such as quantum volume and
CLOPS, whose definition is based on superconducting IBM
machines. While these metrics could be extracted also for other
types of hardware employing the circuit-based model, they might
not be applicable to annealers or photonics.

7. Challenges

Based on our vision of execution of hybrid workflows, we
identify the challenges that must be addressed to realize our
vision of hybrid classic/quantum workflows.

7.1. Quantum Hardware Descriptors

As already mentioned in Section 6, hardware descriptors
should be part of the hardware catalog, to characterize differ-
ent available quantum hardware and to perform decisions on
whether to allocate. The first challenge is to identify descrip-
tors that can be used to describe quantum hardware: while on
classic CPUs we have well-known descriptors (e.g., CPU fre-
quency, RAM frequency, and memory, available storage), quan-
tum hardware cannot be characterized using the same descrip-
tors, due to the inherently different computational model. Also,
there are different hardware technologies available for quan-
tum computers (e.g., superconducting, neutral-atoms, ion-traps,
photonics, and annealers), which makes it difficult to identify
the descriptors most impacting the performance of quantum
computing.

To address this challenge, first of all, in-depth empirical
studies are required to identify the most impacting parameters.
Empirical studies require also the definition of purposely de-
signed benchmarks, similar to [31, 34, 104]. Based on data
collected from the benchmarking, we can identify a subset of
descriptors that is of interest for a specific quantum hardware.
Descriptors can be also composed of aggregated hardware pa-
rameters, such as quantum volume [89], that is used by IBM
Qiskit.

Moreover, applications need to be able to target different
QPUs automatically depending on the problem type, involving
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Figure 8: Quantum Workflow Management System.

minimal code modifications. Hence, a QPU agnostic develop-
ment allows greater freedom and efficiency in hybdrid ecosys-
tems. Recently, a framework named MQT Predictor [91] that
automates quantum device selection and according to compila-
tion of quantum algorithms for suitable hardware, execution has
been proposed. This toolkit9 offers a) prediction method, based
on Supervised Machine Learning, which without performing
any compilation predicts the most suitable hardware specific
to the application in consideration. b) A reinforcement learn-
ing (RL) based method producing device-specific quantum cir-
cuit compilers. The compilation passes from several compiler
tools are combined by learning (trained) optimized sequences
of those passes (following a mix-and-match compiler pass) with
respect to a customizable fidelity.

7.2. Performance Models

Performance models should be able to predict different per-
formance metrics (i.e., running time, error rate) taking as input
(1) a quantum task, and (2) a target quantum hardware where
the input task should be executed. Such performance models
are also required by WMS schedulers to decide where to allo-
cate input tasks. Performance models should be based on values
of identified hardware descriptors to facilitate the integration of
different architectures. The main challenges in designing per-
formance models lie in the difference between quantum archi-
tectures, which makes it difficult to design a generalized model
that can be applied to different hardware. Also, since quantum
error variates with time, depending on different environmental
factors [19], performance models should be automatically up-
dated when a change in hardware descriptors is detected.

Existing performance models have been designed for dif-
ferent quantum hardware [105], targeting specific applications,
without considering applications’ performance with relation to
values of typical hardware descriptors.

9https://github.com/cda-tum/mqt-predictor

7.3. Optimization of Hybrid Workflows

Optimization of hybrid workflows embraces different phases
of workflow execution, depending on the type of quantum tasks:
for circuits, optimization focuses on adaptation of circuits to the
underlying qubit topology, or to perform gate-level optimiza-
tion on the circuit (i.e., removing redundant parts). Also, on
the classic side, data encoding has to be optimized for the un-
derlying classic architecture. Concerning variational quantum
algorithms, as shown by [44, 38], optimization requires setting
different hyperparameters, both on classic (i.e., optimizer pa-
rameters, cost function) and on the quantum side (i.e., circuit
structure). Optimizations should be applied at the time of work-
flow execution.

Since data encoding methods require different algebraic op-
erations on input data [106], optimization could include typical
operations used in HPC to improve mathematical computations,
or even the use of specific hardware (i.e., GPUs, FPGAs) that
are known to perform well for these operations. For optimiza-
tion of circuits according to the underlying hardware, deep-
learning-based approaches [107] or structural optimization ap-
proaches [108, 109] can be considered. Finally, for variational
quantum algorithms, hyperparameter optimization approaches
can be applied, as discussed by [38].

7.4. Error Mitigation

Current NISQ architectures are subject to noise, due to en-
vironmental factors and technological limitations [19]. Consid-
ering the effect of noise on the output of quantum algorithms,
the typical approach in hybrid systems is to perform error miti-
gation on classic hardware. Different approach are available, ei-
ther ML-based [110, 111] or based on error correction codes [112].
In both cases, designing a model for error correction requires
deep knowledge of the target hardware, and collecting different
error metrics. Once error metrics have been identified, since
error is constantly varying over time, data about such metrics
have to be constantly collected in order to timely update the er-
ror model. Finally, the model should be updated timely, as soon
as error goes above a given threshold.
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To address these challenges, first of all, different methods to
constantly monitor quantum hardware-induced errors and read-
out error mitigation strategies [113] must be implemented. More-
over readout Error mitigation strategies for quantum workflows
ha Then, techniques based on reinforcement learning, such as
described in [114, 115]. These methods can be also improved
by applying FPGAs [112] or Edge AI methods, such as [116].
Updates of the model could be triggered by staleness control
methods, similar to [117].

7.5. Integration within WMSs

The final challenge is to integrate quantum machines into
the HPC continuum. At the moment, different frameworks are
available to manage quantum hardware, (i.e., Qiskit, BraKet,
Pennylane). In order to fully exploit available quantum ma-
chines, a WMS should be capable of communicating with dif-
ferent frameworks, integrating all functionalities that are re-
quired for the execution of hybrid workflows (i.e., data encod-
ing, transpilation, error mitigation). Each of these functional-
ities should be integrated with the HPC infrastructure without
affecting performance of workflow execution.

8. Conclusion and Outlook

In this work, we describe the main components that would
be needed for the execution of scientific workflows in hybrid
ecosystems. Our investigation starts from the study of an MD
use case, where we describe a pipeline that starts with the iden-
tification of the quantum candidates and the equivalent quantum
tasks. Based on this analysis, we describe a possible architec-
ture for a hybrid WMS, identifying software components that
would facilitate the integration of classic and quantum archi-
tectures. Finally, we identify the challenges that need to be
addressed for the execution of hybrid workflows.

In the future, we plan to further investigate the integration
of quantum architectures in HPC, considering different types of
architectures (i.e., photonic, annealers) and different program-
ming models (i.e., measurement-based instead of gate-based).
Also, we plan to extend this study on different scientific use
cases, including the development of performant software stacks.
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Appendix A. Mathematical prerequisites for quantum com-
puting

Definition Appendix A.1 (Hermitian Matrices/Operators). :
Let A ∈ Mn,n(C), i.e., A is a square matrix with complex entries
ai j. The matrix A is said to be Hermitian (self-adjoint) if A is
invertible and the matrix elements satisfy the condition,

ai j = a ji

Where a denotes its complex conjugate. Hence, a Hermitian
matrix is equivalent to its transpose complex conjugate (also
represented in quantum computing as a † subscript). A succinct
matrix representation used in quantum computing is, A = A† :=
A

T
.

Definition Appendix A.2 (Unitary Matrices/Operators). : Let
U ∈ Mn,n(C). A Unitary matrix U satisfies the following con-
dition,

U−1 = U† := U
T

Hence, the inverse of a Unitary matrix is its transposed complex
conjugate (also, known as Hermitian conjugate)

Tensor product: Let A be an m× n matrix and B be a p× q
matrix,

A =


a11 a12 . . . a1n
...

. . .
...

am1 . . . amn

 , B =

b11 b12 . . . b1q
...

. . .
...

bp1 . . . bpq

 .
The tensor product C of matrix A and B is an mp × nq dimen-
sional matrix of the form,

C =


a11B a12B . . . a1nB
...

. . .
...

am1B . . . amnB

 ≡

a11b11 a11b12 . . . a12b11 . . . a1nb1q
...

. . .
...

am1b11 am1b12 . . . am2b11 . . . amnbpq

 .
Qubit tensor product state: The total degrees of freedom

of a qubit composite is given by the Tensor product between
qubit states. Consider a set of degrees of freedom associated

with an n dimensional Hilbert space,

H1 = span
{
|0⟩ , |1⟩ , ...., |n − 1⟩

}
,

and another set of degrees of freedom associated with an m di-
mensional Hilbert space,

H2 = span
{
|0⟩ , |1⟩ , ...., |m − 1⟩

}
.

Thus, all possible superposition states of these two qubit-conjoined
Hilbert space is given by the tensor product,

H = H1 ⊗H2 (A.1)

This tensor-product space is spanned by orthonormal basis
vectors,

{| j⟩ ⊗ |k⟩ := | j, k⟩ : j = 0, 1, ...., n − 1; k = 0, 1, ....,m − 1}

Thus, an arbitrary state vector |Φ⟩ in this composite Hilbert
spaceH1 ⊗H2 can be expanded in its computational basis (su-
perposition state) reads,

|Φ⟩ =

n−1∑
j=0

m−1∑
k=0

γ j,k | j⟩ ⊗ |k⟩ , (A.2)

where, the coefficients (amplitudes) γ j,k ∈ C. Using the tensor
(Kronecker) product machinery, one can now formally define
a quantum register. The Hilbert space of an n-qubit initialized
quantum register H⊗n is the n-fold tensor product state of a
single qubit Hilbert space H = C2, i.e.,

(C2)⊗n := C2 ⊗ ..... ⊗ C2︸           ︷︷           ︸
n-copies

(A.3)

with the basis span of Eq.(B.6) being,

B :=
{
|i0⟩ ⊗ .... ⊗ |in − 1⟩ := |i0, ..., iN−1⟩ : i0, ..., in−1 ∈ {0, 1}

}
The tensor product basis can be regarded as column vectors for
e.g., |0⟩ ⊗ .... ⊗ |0⟩ := |0, 0, ..., 0⟩ =

[
1, 0, ....., 0

]T
, ..., |1⟩ ⊗

.... ⊗ |1⟩ := |1, 1, ..., 1⟩ =
[
0, 0, ....., 1

]T

Theorem 1. Schmidt decomposition: Let {H1H2, ...,Hn}

be Hilbert spaces of dimensions p1, p2, ..., pn respectively. As-
sume that pn ≥ pn−1 ≥ .... ≥ p1. For any state in this composite
(multi-partite) system, i.e, |ξ⟩ ∈ H1 ⊗H2....⊗Hn, there exist or-
thonormal states {|ϕ1⟩ , . . . ,

∣∣∣ϕp1

〉
} ⊂ H1, . . . , {|ψ1⟩ , . . . ,

∣∣∣ψpn

〉
} ⊂

Hn such that for real non-negative scalar coefficients λi ∈ R,

|ξ⟩ =

r∑
i=1

λi |ϕ⟩i ⊗ ..... ⊗ |ψ⟩i .

Where, λi are the Schmidt coefficients, and |ϕl⟩, ...., |ψl⟩

are the corresponding entangled states of the composite (multi-
partite) system. The number of non-zero Schmidt coefficients
r determines the degree of entanglement between the multiple
subsystems.

Appendix B. Quantum Programming Model

Appendix B.1. Quantum information processing and quantum
computation

Development of quantum software stacks, quantum com-
pilers, and development in the domains of quantum software
engineering requires at least a basic understanding of quantum
physics and quantum information processing. This section is
an introduction to the programming model for quantum com-
putation, which is especially intended for computer scientists,
computer software engineers, and computational scientists who
intend to migrate parts of their classical software onto quantum
devices.
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Appendix B.2. Qubit

The basic unit of information, reflecting an on and off state
of classical computers are the classical bits which can take the
values 0 and 1 only. The basic building blocks of quantum com-
puting are known as the quantum bits or in short qubits.

In the case of a single qubit the associated Hilbert space is
H = C2. Thus, a qubit is a linear combination of orthonormal
(vectors) basis states (superposition), denoted in the Dirac no-
tation as |0⟩ and |1⟩. Thus the state of a qubit is a vector in a
two-dimensional complex vector space [76]. Thus, |Ψ⟩ can be
expanded in the orthonormal basis states as,

|ψ⟩ = α |0⟩ + β |1⟩ , (B.1)

where,

|0⟩ =
[
1
0

]
and |1⟩ =

[
0
1

]
(B.2)

α, β ∈ C. These complex coefficients are also called probability
amplitudes. Since probabilities must add to 1 (normalization
condition), the inner-product of the state |ψ⟩ with itself (norm
squared of the vector) must be equal to 1. Hence, it is equivalent
to the condition that

⟨ψ|ψ⟩ := ||ψ||2 = 1, (B.3)

where the state ⟨ψ| ∈ H∗ belongs to the dual vector space. This
is equivalent to saying that the complex coefficients satisfy a
unit norm condition, i.e.,

|α|2 + |β|2 = 1. (B.4)

An actual measurement process determines the value of the
qubit, which is obtained via the amplitude probability squared.
The measurement procedure yields a classical result either cor-
responding to a 0 or 1 bit value. Thus, the measurement of |0⟩ is
obtained by squaring the probability amplitude of its complex
coefficient, i.e. |α|2, whereas |1⟩ is measured by computing |β|2.
From Eq.(2) it is clear that the state vector |ψ⟩ is constrained on
a unit sphere S2 = {x ∈ R3 : ||x|| = 1}. Thus the geometric rep-
resentation of a qubit is the so-called Bloch-sphere represen-
tation (The Bloch sphere was generated using the QuTiP [118]
package).

Figure B.9: Bloch sphere representation of the qubit. The red-colored vector
(arrow) is the state |0⟩, while the green-colored vector is state |1⟩. The orange
vector indicates an intermediate state and the colored points correspond to the
qubit rotations (infinitely many possibilities to rotate the vector) on the Bloch
sphere.

In the Bloch sphere representation, see Fig.B.9, the state
vector |ψ⟩ can be expressed in terms of the spherical polar co-
ordinate basis reads,

|ψ⟩ = cos
ϑ

2
|0⟩ + eiφsin

ϑ

2
|1⟩ , (B.5)

where, 0 ≤ ϑ ≤ π and 0 ≤ φ ≤ 2π. Thus, the state (Bloch)
vector |ψ⟩ can assume any of the infinitely many orientations
on the Bloch-sphere. This signifies the tremendous power of
information processing using quantum, since, the qubit on the
Bloch sphere can exist as an infinite coherent superposition of
all the states on the unit-sphere simultaneously! This is in stark
contrast to classical information processing wherein, the classi-
cal bits can only assume either of the two Boolean values 0 or
1 at a particular time instant [76].

Appendix B.3. Quantum registers

In classical computers, multiple bits are combined to form a
(classical) register. In the same way, a sequence of n initialized
qubits cascaded together forms the storage-device, and is called
the quantum register or a qubit register. Thus, an arbitrary state
vector |Ψ⟩ of the composite n-qubit quantum register is a ten-
sor product state living in a very huge Hilbert space (C2)⊗n. It
allows an expansion in its computational basis (orthonormal)
states as,

|Ψ⟩ = α0,0..,0 |0⟩⊗...⊗|0⟩+α0,0..,1 |0⟩⊗...⊗|1⟩+α1,1..,1 |1⟩⊗...⊗|1⟩ .
(B.6)

Where, the symbol ⊗ corresponds to the mathematical op-
eration of a Tensor product (see Appendix A). From here on,
we will use a more compact notation for |i0⟩⊗ |i1⟩⊗ ...⊗ |in−1⟩ =

|i0, i1, ..., in−1⟩ .
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Since a single qubit Hilbert (state) space is H = C2, cor-
respondingly, an n-qubit quantum register corresponds to an n-
fold tensor product of the single qubit state space, i.e.,

(C2)⊗n := C2 ⊗ ..... ⊗ C2︸           ︷︷           ︸
n-copies

(B.7)

Introducing a more succinct notation, the n-qubit quantum
register, Eq.(B.6) can be written as,

|Ψ⟩ =

2n−1∑
i=0

αi |i⟩ (B.8)

where, i0, i1, ..., in−1 in |i0, ...., in−1⟩ represent the binary no-
tation of i. The complex coefficients, αi0,....,in−1 ≡ αi ∈ C. The
normalization condition,

2n−1∑
i=0

|αi|
2 = 1,

Appendix B.4. Quantum Entanglement and Quantum Parallelism

This subsection delves into two pivotal phenomena of quan-
tum physics, namely quantum entanglement, or just entangle-
ment and quantum parallelism, which play fundamental roles
in the fields of quantum computation quantum information pro-
cessing, and quantum communication protocols [119].

• Quantum entanglement: In quantum computers, a pair
or multiple qubits can be correlated with each other over
long distances owing to the property of quantum entan-
glement. In an entangled quantum system, the state of
one qubit cannot be described independently of the state
of the other irrespective of their spatial separation. Thus,
these states are not separable (no tensor product repre-
sentation) and cannot be written as a tensor product state.
The degree of entanglement between the composite sys-
tems can be quantified using the Schmidt decomposition
(see Appendix A for definition). Manipulating the state
of one of the qubits instantaneously changes the state of
the other one in a predictable way. Thus, quantum en-
tanglement enables the users to create complex quantum
circuits (cf. Appendix C), wherein an operation on a sin-
gle qubit instantaneously affects the state of another qubit
that it is correlated with. Entanglement enables quantum
computers to perform parallel computations by adding
additional qubits resulting in an exponential increase in
its number-crunching capabilities.

• Quantum parallelism: Entanglement also influences the
superposition of multiple qubits by allowing them to be
in a joint superposition state, leading to another intrinsic
feature of quantum processors, namely, quantum paral-
lelism [120, 121]. It is evident from Eq.(B.6) that a quan-
tum register with n-qubits is in a quantum superposition
of 2n states, ie., all classical alternatives at once. Hence,
one can simultaneously manipulate all the 2n possibilities
that exist in this huge extended vector space.

Appendix B.5. Quantum Logic Gates, Quantum Circuit Model
and Quantum Algorithms

Quantum (logic) gate architectures are the quantum analogs
of classical logic gates. A quantum gate Û is represented as
a unitary operator (matrix) is a generalization of rotation on
complex vector spaces. An n-qubit quantum register The uni-
tary operator transformations are inner-product (or norm) pre-
serving. By definition, these unitary operator inverse is its own
transposed complex conjugate, also called Hermitian conjugate
(see Appendix A), i.e.,

ÛÛ† = Û†Û = 1.

The U† quantum gate reverses the computation by undoing the
gate operator. Thus, in quantum devices, there exists another
unique feature of reversible computation using the inverse Uni-
tary operators that is not possible in classical architectures.

Appendix B.5.1. Quantum Circuit Model:
The initialized quantum register together with the qubit op-

eration producing single or multi-qubit quantum gate sequences
form the basic building blocks of a quantum circuit. There
are multiple quantum gates that one uses to perform compu-
tations on the state vector. Some of the most frequently used
single qubit gates in quantum information processing and com-
putation are the so-called, PAULI gates (operators) {I, X, Y , Z},
the HADAMARD gate H and the P-gate (see Appendix B).

A quantum algorithm is a collection of unitary quantum
gates that are assembled to successively perform one or many
unitary transformations (computations) on a quantum register,
in order to achieve a specific computational task. In short, these
perform targeted rotations (operations) on a single qubit or a
quantum register by mapping it onto another state on the Bloch-
sphere. Thus quantum gates perform linear unitary transforma-
tions (manipulation) on an input quantum register |R⟩ and map
them onto an output quantum register |Q⟩ as follows,

Û |R⟩ = |Q⟩ :=
N∑

i=1

αi0,...,iN−1 |i0, ...., iN−1⟩ (B.9)

The result of the quantum algorithm U is obtained by mea-
suring the quantum register |Q⟩ with a probability |αi0,..,iN−1 |

2.
Due to the probabilistic nature of the quantum processing units
(QPUs), over different executions of U followed by a measure-
ment to determine the result yields different bit-strings accord-
ing to their probabilities. This is to say that a single execution of
a quantum algorithm is like performing a random experiment.
Thus, an algorithm is typically executed multiple times, pro-
ducing a probability density function (probability distribution)
of results rather than a single value. The most probable result
in this statistical sample space corresponds to the actual result
of the quantum algorithm.

Appendix C. Unitary Quantum Logic Gates

Single Qubit Gate operations.
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X gate: The Pauli-X gate is the quantum analog of the
classical NOT gate. It performs a bit flip (NOT) operation
|x⟩ 7→ |¬x⟩.

The matrix representation of the X-gate reads,

X =
[

0 1
1 0

]
,

and the quantum circuit and truth table is,

|x⟩ X |¬x⟩
Input Qbits Output Qbits
|0⟩ |1⟩
|1⟩ |0⟩

Z gate: The Pauli-Z gate is the sign Flip gate following
the operation, |x⟩ 7→ (−1)x |x⟩.

The matrix representation of the Z-gate reads,

Z =
[

1 0
0 −1

]
,

with the quantum circuit and truth table being,

|x⟩ Z (−1)x |x⟩
Input Qbits Output Qbits
|0⟩ |0⟩
|1⟩ -|1⟩

Y gate: The Pauli-Y gate performs a rotation by π around
the y-axis.

The matrix representation of the Y-gate reads,

Y =
[

0 −i
i 0

]
,

with the quantum circuit and truth table being,

|x⟩ Y i(−1)x |x⟩
Input Qbits Output Qbits
|0⟩ i|0⟩
|1⟩ -i|1⟩

I gate: The Identity gate I leaves all states unchanged,

The matrix representation of the Identity gate reads,

I =
[

1 0
0 1

]
,

with the quantum circuit and truth table being,

|x⟩ I |x⟩
Input Qbits Output Qbits
|0⟩ |0⟩
|1⟩ |1⟩

One of the most important and fundamental single qubit
gate is the HADAMARD gate. The Hadamard gate prepares a su-
perposition state, i.e.,

H |0⟩ =
1
√

2

[
1 1
1 −1

] [
1
0

]
=

1
√

2

[
1
1

]
=
|0⟩ + |1⟩
√

2
:= |+⟩

(C.1)

H |1⟩ =
1
√

2

[
1 1
1 −1

] [
0
1

]
=

1
√

2

[
1
−1

]
=
|0⟩ − |1⟩
√

2
:= |−⟩

(C.2)

P gate: The phase (shift) gate P are single qubit gates that
leaves the basis state |0⟩ unchanged while induces a phase on
state |1⟩, i.e.,

P(φ) |0⟩ =
[

1 0
0 eiφ

] [
1
0

]
=

[
1
0

]
= |0⟩ (C.3)

P(φ) |1⟩ =
[

1 0
0 eiφ

] [
0
1

]
= eiφ

[
0
1

]
= eiφ |1⟩ (C.4)

Two Qubit Gate operations.

CNOT gate: The CNOT or the Controlled-X gate is a
2-qubit gate which flips the second qubit (target qubit) if
and only if the first qubit (control qubit) is state |1⟩. It is
the quantum analogue of the classical XOR gate and maps
the state |x, y⟩ 7→ |x ⊕ y⟩, where the symbol ⊕ denotes the
XOR logic operation.

The matrix representation of the controlled-X gate reads,

|0⟩ ⟨0| I + |1⟩ ⟨1| X =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


The quantum circuit and the corresponding truth (logic) ta-

ble is shown below,

CNOT

|x⟩ |x⟩

|y⟩ |x ⊕ y⟩

Input Qbits Output Qbits
|00⟩ |00⟩
|01⟩ |01⟩
|10⟩ |11⟩
|11⟩ |10⟩

CZ gate: The controlled Z gate is a 2-qubit gate flips
the sign of the state |11⟩, while leaving the other states
unaffected, ie., |x, y⟩ 7→ (−1)x |x, y⟩
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The matrix representation of the controlled-Z reads,
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 ,
and the corresponding quantum circuit and truth table are also
presented below,

CZ

|x⟩ |x⟩

|y⟩ Z (−1)x |y⟩

Input Qbits Output Qbits
|00⟩ |00⟩
|01⟩ |01⟩
|10⟩ |10⟩
|11⟩ -|11⟩

SWAP gate: The 2-qubit SWAP gate swaps the qubit
states and maps a state |a, b⟩ 7→ |b, a⟩.

The permutation matrix representation reads,
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 (C.5)

while the quantum circuit representation and truth table is,

SWAP

|x⟩ |y⟩

|y⟩ |x⟩

Input Qbits Output Qbits
|00⟩ |00⟩
|01⟩ |10⟩
|10⟩ |01⟩
|11⟩ |11⟩

Pauli Group: Pauli matrices generate a discrete group closed
under multiplication, called the Pauli group Pn. The set Pn

consists of n-fold tensor product of the Pauli operators (Pauli
strings) multiplied by a factor γ ∈ {±1,±i} accounting to 16-
elements. An example of the Pauli group for n = 2, are the
2-fold tensor product of the Pauli gates, {γI ⊗ I, γI ⊗ X, γI ⊗
Y, γI ⊗ Z, γX ⊗ I, γX ⊗ X, ....γZ ⊗ Z}.

Definition Appendix C.1. The normalizer of a subgroup H of
a group (or semigroup) G is defined as:

NG(H) =
{
g ∈ G|gHg−1 = H

}
Clifford gates: The Clifford group on n qubits, Cn, are the

set of unitary operations that normalize the Pauli group Pn. That
is, U ∈ Cn if U pU† ∈ Pn, ∀p ∈ Pn. The Clifford gates are
unitary operators in

⋃
n≥1 Cn. A quantum circuit constructed

merely out of Clifford gates is called the Clifford circuit [122].
It performs qubit operations on some designated set of initial-
ized qubits, while preserving the state of remaining the ancilla
qubits.

The Clifford gate set consists of three gates, namely, the
CNOT (controlled-NOT), the Hadamard gate H and the Phase
gate P.

Appendix C.1. Three and Multi-qubit gate operations

TOFFOLI gate: The CCNOT (controlled-controlled NOT
gate) or the TOFFOLI gate is a three qubit universal re-
versible quantum gate. If the first two qubits are in
state |1⟩, then it flips the last qubit state, i.e., |x, y, z⟩ 7→
|x, y, z ⊕ (x ∧ y)⟩

The Toffoli gate in its matrix form reads,

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


.

The three qubit Toffoli gate has an equivalent quantum cir-
cuit representation solely interms of two qubit gates H, T and
T †. and are . Also, the truth table of this quantum logic gate are
presented below,

CCNOT

≡

T

T T †

H T † T T † T H

Input Qbits Output Qbits
|000⟩ |000⟩
|001⟩ |001⟩
|010⟩ |010⟩
|011⟩ |011⟩
|100⟩ |100⟩
|101⟩ |101⟩
|110⟩ |111⟩
|111⟩ |110⟩

FREDKIN gate: The CSWAP (controlled-swap gate) is a
three qubit universal reversible quantum gate. If and only
if the first qubit state is state |1⟩, it leaves the the first qubit
unchanged and swaps the last two bits.
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The Fredkin gate in its permutation matrix form reads,

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1


.

The three qubit Fredkin gate has an equivalent quantum cir-
cuit that can be solely constructed interms of CNOT, V & V†

qubit gates [123]. Here,

V =
[

0 1
1 0

] 1
2

,

is the square-root of the Pauli X gate. Infact, the FREDKIN gate
is just the TOFFOLI gate with two CNOTs on its either sides.
The corresponding truth table for the FREDKIN gate is presented
below,

C-SWAP

|x⟩ |x⟩

|y⟩ |y⟩

|z⟩ |z ⊕ x⟩

≡

C-SWAP

V V V†

Input Qbits Output Qbits
|000⟩ |000⟩
|001⟩ |001⟩
|010⟩ |010⟩
|011⟩ |011⟩
|100⟩ |100⟩
|101⟩ |110⟩
|110⟩ |101⟩
|111⟩ |111⟩

Appendix D. Engineering complex quantum circuits

Entangled states: Separable quantum state can be expanded
in its computational basis as, |Ψ⟩ = |ψ0⟩ ⊗ |ψ1⟩ ⊗ .... ⊗ |ψn−1⟩.
Whereas, an Entangled quantum state |ζ⟩ cannot be decom-
posed into tensor product states, i.e., |ζ⟩ , |ξ0⟩ ⊗ |ξ1⟩ ⊗ .... ⊗
|ξn−1⟩. The most simple and maximally entangled quantum

states can be acheived by entangling 2-qubits in 4 different man-
ners, also known as the Bell states or EPR (Einstein-Podolski-
Rosen) states,∣∣∣Φ+〉 = |00⟩ + |11⟩

√
2

,
∣∣∣Φ−〉 = |00⟩ − |11⟩

√
2

,∣∣∣Ψ+〉 = |01⟩ + |10⟩
√

2
,
∣∣∣Ψ−〉 = |01⟩ − |10⟩

√
2

,

We demonstrate the preparation of the |Φ+⟩ state via a quantum
circuit.

|0⟩ H
|00⟩+|11⟩
√

2
|0⟩

In the 3-qubit case, there exists non bi-separbale classes of
entangled states in quantum computing are for e.g., the 3-qubit
Greenberger-Horne-Zeilinger (GHZ) state [124],

|GHZ⟩ =
1
√

2
(|000⟩ + |111⟩)

|0⟩ H

|000⟩+|111⟩
√

2|0⟩

|0⟩

another highly important entangled 3-qubit state that is in-
equivalent to the GHZ state is the W state [125],

|W⟩ =
1
√

3
(|001⟩ + |010⟩ + |100⟩)
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Appendix E. Matrix Size

The symmetric bipartite matrix BIJ can be partioned into a
block matrix form.

BIJ =

(
0n×n EIJ
ET

IJ 0n×n

)
(E.1)

The diagonal entries of the bipartite block matrix contains
the zero matrix. The off-diagonal entries EIJ (n × n matrix)
and its transpose ET

IJ contain as entries the Euclidean distances
di j as defined in Eq.(??). The Euclidean distance (metric) is a
function defined on vector space V,

d : V × V 7→ R.

Therefore, the block matrix EIJ takes values only over the field
R. The matrix representation is given by,

EIJ =


d11

i j · · · d1n
i j

...
. . .

...
dn1

i j · · · dnn
i j

 . (E.2)

For given two segments I and J, the Euclidean metric be-
tween Cα carbon atoms i and j reads,

di j = d(i, j) =
√

(ix − jx)2 + (iy − jy)2 + (iz − jz)2. (E.3)

Theorem 2. Input bipartite distance matrix BIJ is a Hermitian
matrix.

Proof. Let BIJ ∈ R2n × R2n, with n ∈ N. Note that from Equa-
tion E.1,

B†IJ =
0n×n EIJ

E
T
IJ 0n×n

T

=

(
0n×n EIJ
ET

IJ 0n×n

)T

= BIJ

Hence, BIJ is a real symmetric matrix. Since, every real sym-
metric matrix is an Hermitian matrix (operator), BIJ is an Her-
mitian operator.

Thus, the set of eigenvalues Λ of the bipartite distance ma-
trix all belong in R. Thus, the Hermitian bipartite matrix B̂IJ
qubit encoding (via mapping on to Pauli operators) without any
further manipulation.

Appendix F. C-SWAP test methodology for Cα atom dis-
tance estimation

First introduced in the context of quantum fingerprinting [126].
The procedure for engineering the SWAP test circuit involves,
(i) Entangling qubit registers consisting of the mapped classi-
cal data with an ancillary/helper qubit |0⟩ and, (ii) estimating
the inner product between two different states through repeated
measurements of the ancillary qubit. Thus, this quantum algo-
rithm measures the so-called fidelity, which is nothing but the
inner product or overlap between two different quantum states.
The fidelity F between two normalized quantum states |ϕ⟩ , |ψ⟩
is mathematically expressed as, F(ϕ, ψ) = | ⟨ϕ|ψ⟩ |2 ∈ [0, 1].

Hence, the higher the fidelity, the closer are the quantum states
to each other, i.e, F(ϕ, ψ) = 1, meaning the quantum states are
parallel while F(ϕ, ψ) = 0 meaning orthogonal quantum states.

From an application point of view, this quantum routine has
been integrated into larger quantum circuits to achieve the tar-
get tasks. For example, it has been used as a primary engine
for speeding-up matrix multiplications boiling down to merely
O(N2) [59] time-complexity. Moreover it has been extensively
used in the domains of quantum machine learning and big-data
analysis (also sometimes called quantum big data) due to its
exponential speedup offered in calculating distances between
huge amounts of vector (tensor) datasets [74, 85, 127].

Circuit Description. We initialize an ancillary (helper) qubit
|0⟩, two quantum registers |ψ⟩ and |ϕ⟩. The initial state of com-
bined tensor product is

|ΨA⟩ = |0⟩ ⊗ |ϕ⟩ ⊗ |ψ⟩ , (B.1)

Encoded into the states |ϕ⟩ and |ψ⟩ are classical data atom
coordinates using the AMPLITUDE encoding method. In ampli-
tude encoding, a classical vector or tensor, X =

[
x1, x2, ..., xn

]T
∈

RN is mapped onto the quantum device by implementing the
following algorithm written as a pseudocode:

Algorithm 1 Amplitude Encoding Schema

Input: Classical data, X =
[
x0, x1, ..., xp−1

]T
∈ Rp, number of

qubits n.
Result: Quantum data with coefficients of X ∈ Rp en-
coded as amplitudes of the state-vector X 7→ |QX⟩ =

1
||x||2

∑n−1
i=0 xi |i⟩

1: p← LEN(X)
2: if ⌈log2(n)⌉ − p = 0 then
3: QX ← X {Calculate magnitude (norm) squared of X}
4: QX 7→ |QX⟩ =

1
||X||2

∑n−1
i=0 xi |i⟩

5: end if
6: if ⌈log2(n)⌉ − p = (k − 1) then
7: QX ←

[
x0, x1, ..., xp−1

p-entries

, 0, ....., 0
(k-1) -entries

]T

︸                              ︷︷                              ︸
p + (k − 1) = n

{Pad the vector X

with (k − 1) 0’s to convert to dimension n.}
8: QX 7→ |QX⟩ =

1
||X||2

(∑p−1
i=0 xi |i⟩ +

∑n−1
i=p 0 |i⟩

)
{Calculate

magnitude (norm) squared of X}
9: end if

10: return |QX⟩

Thus, an n-dimensional classical data vector (tensor) can
be efficiently encoded into the wavefunction (state vector), re-
quiring merely ⌈log2(n)⌉ qubits [106]. Here, we describe the
methodology to adapt the SWAP test quantum circuit [126, 106,
127] for Cα atoms distance matrix calculations.

Appendix F.0.1. Problem Size and Qubit Mapping
Input matrix size: While on classic architectures the amount

of atoms and segments we can process is dependent on the
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amount of RAM available in the system, in the quantum ma-
chines we are limited by the amount of qubits of the machine.
As per the limitation of the target machines, we limit our input
size, i.e. the length of amino acid segments used to generate the
distance or bipartite matrix. For a chosen segment of length k
(consisting of k atoms), the Euclidean distance matrix D (within
the same segment) is a k × k symmetric matrix with diagonal
entries as zeros. The constructed bipartite distance matrices BIJ
(between two separate segments) is a 2k × 2k dimensional ma-
trix with a k × k block matrices EIJ (cf. Appendix E).

Exploiting symmetries of the input CVs leads to a signifi-
cant dimensional reduction on the matrix sizes, making it fea-
sible to encode smaller input sizes onto quantum devices. In
our case, it suffices to calculate only k(k+1)

2 unique entries of D
and k2 entries for the block matrix of EIJ of the 2k × 2k sized
BIJ (since the other block is just the tranpose of the matrix cf.
Appendix E) respectively. Due to such dimensional reduction
properties intrinsic to our MD system, it becomes viable to cut-
down the input system size for our Target Task I and Target Task
II on the NISQ hardware.

The quantum state preparation for the Cα atom coordinates
done via pseudo code 1 is depicted in the Data Encoding block
in Figure F.10.

Figure F.10: C-SWAP quantum subroutine implementation for distance matrix
generation.

Let the position vectors (classical data) corresponding to
two different atoms be denoted as u⃗, v⃗. Then the qubits can ini-
tialized with the state amplitudes (coefficients), in such a way
that:

|ϕ⟩ =
1
√

W
(||⃗u|| |0⟩ − ||⃗v|| |1⟩), (B.2a)

|ψ⟩ =
1
√

2
(|u, 0⟩ + |v, 1⟩), (B.2b)

with ||⃗u||, ||⃗v|| being the Euclidean norm of the coordinates and
W = ||⃗u||2+ ||⃗v||2. The corresponding amplitude-encoded vectors
read,

|u⟩ =
N−1∑
i=0

ui

||⃗u||
|i⟩ , (B.3a)

|v⟩ =
N−1∑
i=0

vi

||⃗v||
|i⟩ (B.3b)

Since each qubit has two possible states, the number of coordi-
nates of the classical vector data must necessarily be 2n [106].

The real-time coordinates of Cα atoms whose positions vec-
tors evolves as a function of time t, {xi(t), yi(t), zi(t)}1≤i≤n ∈ R3.
These three-dimensional position vector u⃗ must be padded with
a 0 as the fourth coordinate. This leads to a vector of the form(
x(t), y(t), z(t), 0

)
with 22 = 4 coordinates. This allows a suit-

able encoding scheme onto a 2-qubit quantum register.

In Figure F.10, the 3-qubit quantum register |ψ⟩ = |Q1,Q2,Q3⟩,
initialized as |0, 0, 0⟩ is then encoded with the concatenated atom-
pair coordinates values10 (x1, y1, z1, x2, y2, z2, 0, 0) ∈ R8. Here,
it is clear that 0 padding is required for embedding, since three
qubits are only capable of storing a vector of dimension 23 = 8.

The is followed by an application of the HADAMARD gate H

(cf. Appendix B) on the ancillary qubit. Implementing con-
trolled swap operation, is performed using the three-qubit FREDKIN
gate (cf. Appendix B) on the other two registers. The ancillary
qubit works like a control bit. The total state of the system after
these two gate operations is,

|ΨB⟩ =
1
√

2

(
|0, ψ, ϕ⟩ + |1, ϕ, ψ⟩

)
. (B.4)

The application of another Hadamard gate on the ancillary qubit
|0⟩ yields

1
2
|0⟩ (|ϕ, ψ⟩ + |ψ, ϕ⟩) +

1
2
|1⟩ (|ϕ, ψ⟩ + |ψ, ϕ⟩).

On applying the Hadamard gate, the probability of measuring
state ′0′, i.e., of control qubit yields,

Pr(0) =
1
2
+

1
2
| ⟨ϕ|ψ⟩ |2.

Euclidean distances d(i, j) between Cα atoms can be obtained
using Eqs.( B.2, B.3).

d(u⃗, v⃗)2 = 2W | ⟨ϕ|ψ⟩ |2 = 4W(Pr(0) − 0.5). (B.5)

Our simulations comprised of a similar strategy as put-forth
in [126]. Here, we perform a single execution for each Cα atom
pair using the SWAP test subroutine. Hence, a total number of
n repeated circuit executions were required for calculating the
distances between n atom pairs using the quantum architecture.

Appendix G. The Variational Quantum Eigensolver Ma-
chinery

Appendix G.1. The mathematics of VQE

The theoretical groundwork for VQE starts with the vari-
ational Rayleigh-Ritz functional. Given a Hamiltonian (Her-
mitian operator) Ĥ and a intial trial wavefunction with respect

10For the sake of brevity, we drop the time-dependence of the atom coordi-
nates.
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to some vector-valued parameter ϑ is |Ψ(ϑ)⟩ (ansatz wavefunc-
tion). The Rayleigh-Ritz variational principle [80] sets an opti-
mized upper bound for the ground state energy E0 (lowest pos-
sible expectation/average value) associated with the Hamilto-
nian 11, E0, i.e.,

E0 := ⟨Ĥ⟩ϑ ≤
⟨Ψ(ϑ)| ˆH(ϑ) |Ψ(ϑ)⟩
⟨Ψ(ϑ)|Ψ(ϑ)⟩

. (F.1)

The VQE machinery finds a paramterization of the wavefunc-
tion |Ψ⟩, such that the expectation value of the Hermitian
operator Ĥ is minimized and approaches closer to the lowest
eigenvalue E0 after successive iterative optimization steps [46].

A PQC consisting of an initialized qubit register and a set
of unitary quantum gates, can only perform a series of unitary
transformations and measurements. Inorder to execute such a
minimization (optimization) task as described in Eq.(F.1) using
quantum circuits, the user must define a so-called ansatz wave-
function (trial eigenvector) |Ψ(ϑ)⟩. An initial generic parametrized
unitary quantum gate U(ϑ) applied onto an initialized qubit reg-
ister state, say U(ϑ) |0⟩⊗N = |Ψ(ϑ)⟩ (∀ ϑ ∈ (−π, π]) generates
the ansatz wavefunction.

The Hamiltonian Ĥ (Hermitian Matrices in general) can be
encoded onto the Pauli operators multiplied by weights (linear
combination of elements in the Pauli group), i.e.,

Ĥ =
∑
α

waP̂a, ∀P̂a ∈ Pn. (F.2)

Here, wa are the set of weights (coefficients) and P̂a are Pauli
strings inPnrespectively [46]. In the Pauli decomposed version,
Eq.(F.3) Thus the VQE optimization problem, designed using
the quantum circuit reads,

EVQE = min
θ
⟨0|U†(θ)ĤU(θ) |0⟩ = min

θ

P∑
a

wa ⟨0|U†(θ)P̂aU(θ) |0⟩ .

(F.3)

The iterative optimization of Eq.(F.3) is similar to the one that
one encounters in machine learning , thus, is also known as the
cost (loss) function in Hybrid systems.

Thus, the quantum expectation values need to be executed
on a quantum device. By contrast, operations like summation of
the expectation values in Eq.(F.3) and the iterative optimization,
for e.g., gradient-descent (parameter update à la machine learn-
ing) of each of the terms in EVQE = minθ

∑
a waEpa , is carried

out using classical optimization algorithms. This clearly depicts
the workload sharing pipeline between classical and quantum
devices in hybrid frameworks.

11The expectation value of a matrix Ô with respect to a vector |ϕ⟩ is defined
as ⟨ϕ|Ô|ϕ⟩

⟨ϕ|ϕ⟩ .
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