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Abstract—The edge computing paradigm has been proposed
as a way to address near real-time requirements of typical
IoT applications by providing cloud functionalities closer to the
source of data. In this work, we describe the testbed that we build
for typical edge applications. First, we describe the hardware
and software configuration of Rucon LiveLab; then, we describe
a possible use case for Rucon LiveLab. Finally, we describe open
challenges in distributed analytics for edge computing.

I. INTRODUCTION

The edge computing paradigm has been proposed to meet
the strict latency and accuracy requirements of modern ap-
plications by extending cloud functionalities closer to the
source of data. Nowadays, it is possible to process data closer
to data sources thanks to technological advances that allow
placement of computation, network and storage capabilities to
edge nodes, i.e., micro data centers or resource-constrained
devices such as Raspberry Pis. To cope with the ever-growing
application requirements and user needs, in the near future,
we can expect many edge-deployed and distributed clusters
managed by different providers as in the multi-cloud con-
cept. The new edge computing paradigm should ensure the
adaptive placement of data analytics tasks and application
instances across different infrastructures to keep overall system
performance under control. Edge-deployed clusters can be
heterogeneous, e.g., containing different initial capacities and
different availability of resources over a certain period of time.

In this work, we describe RUCON LiveLab, the distributed
infrastructure that we employ as edge applications testbed.
First, we describe the architecture of RUCON LiveLab and
the technologies that we use for our analytics. Afterward, we
describe a use case for Rucon LiveLab in the IoT context.
Finally, we describe future work and open challenges.

II. RUCON LIVELAB

A fog computing testbed for rapid prototyping fog com-
puting components has been described in [1]. The proposed
system is called PiFogBed and it is designed for mobile
computing. In comparison with the centralized architecture of
PiFogBed, we propose a distributed architecture with three
sub-clusters, to simulate a more geographically distributed
environment. Also, PiFogBed relies also on Cloud nodes and
other additional components, like mobile nodes, and targets
medical applications. In our work, we focus on more com-
putationally intensive applications, such as video analytics,
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Fig. 1. System Configuration of the RUCON LiveLab.

Fig. 2. Kubernetes Level Architecture.

to test the capability of our system to respect near real-time
constraints on applications with higher demands.

Figure 1 shows the physical architecture on which we plan
to simulate novel approaches using 12 Raspberry Pis 3B+
separate into 3 stackable cases, each containing 1 master and
3 worker nodes. Each RPi is equipped with 1 GB RAM
memory and a Quad-Core ARM processor running at 1.4 GHz.
All RPis are connected to the network with Netgear 24-Port
10-Gigabit Switch and an Ethernet router. Further, we plan
to utilize two additional in-house servers (rll-mdc01 and rll-
mdc02) equipped with 256 GB RAM memory and 24-core
Intel Xeon E5 processor running at 2.2 GHz, to simulate an
edge micro data center. Since the Kubernetes cluster is based
on master-worker architecture, Figure 2 illustrates the setup in
which every cluster consists of 1 master and 3 worker nodes.

Before building the testbed, a set of technologies, tools,
and languages was used in edge context to set up a virtual
environment for testing purposes, including:

• Kubernetes is a platform that is one of the widely used
open-source orchestrators that automates deployment and
management of multiple containerized applications across



multiple machines. Kubernetes can be installed with
minikube as a multi-node cluster on the localhost.

• Docker is a container platform used to build and isolate
the applications and corresponding stack of services on
containers, that is, standalone execution environments.

• Vagrant represents a tool for managing virtual machine
environments. One of the typical providers to set up
virtual machines is VirtualBox. Additionally, Ansible
playbooks are used in combination with Vagrant to install
needed packages and tools (e.g., Kubernetes, Docker).
Ansible playbooks, as later Kubernetes deployment man-
ifest files, are written in YAML (Yet Another Markup
Language) as it is often used for configuration files.

III. USE CASE SCENARIO

Many IoT applications require fast response times and real-
time decisions. However, data often travel a long distance from
sensors to a cloud data center for processing, while sending
results back to users. In this use case, we aim to design a
distributed data analytic framework running on edge nodes
such as Raspberry Pis and micro data centers. By integrating
these edge resources efficiently into data processing, we can
reduce response time and network bandwidth. Finally yet
importantly, there is an increasing demand for data analytics
that can be dynamically and modularly applied to collected IoT
data in real-time. Especially, machine learning algorithms [2]
from a shared and reusable toolbox should be made available
to users in order to facilitate their data analytics tasks. These
tasks include video analytics for surveillance to identify miss-
ing/wanted individuals or detect unusual activities by patients.

In addition, the wide-area network will likely suffer from
data congestion in the near future due to 20 billion forecasted
IoT devices. Due to network congestion or node failures,
it becomes important to be aware of failure probabilities
[3], especially in emerging edge computing. Thus, instead of
traditionally performing centralized data analytics, the edge
intelligence [4] should strive for dynamic placement of data
analytics tasks across different nodes at runtime. The frame-
work should enable parallelization for data analytics, allowing
subtasks to be processed closer to the data sources and thus
reducing response time and costly data transfer to the cloud.

Our main objectives through this testbed are:
• building a novel distributed edge analytics framework;
• allowing dynamic and self-adaptive placement of process-

ing components across edge nodes.
Distribution of data analytics depends on four aspects,

namely, (i) workload size in which data are constantly pro-
duced; (ii) time-sensitivity or urgency level to deliver data
analytics results; (iii) resource availability; and (iv) complexity
of data analytics tasks. However, each scenario has different
requirements and challenges for performing data analytics:

• Which algorithms to apply and how to configure different
input parameters?

• How to preprocess, filter data, and which data to use?
• How to select the right amount and type of resources

based on complexity and runtime demands?

A typical example of applications that may benefit from
Edge analytics are video-surveillance and driving assistance
since these applications require video streaming analytics tasks
(e.g., object recognition, to prevent collisions and accidents or
to identify suspects in an area). Object recognition tasks have
to be performed with strict latency requirements, in order to
avoid disasters, especially in the case of driving assistance and
collision detection. For these reasons, these tasks cannot afford
the latency caused by the round trip between streaming devices
and the remote Cloud. Pushing intelligence to the Edge, closer
to these devices, will significantly reduce latency and allow
timely reactions [5]. Our group, Magenta and Swarco are
implementing an intelligent traffic safety solution based on 5G,
where the surroundings are recorded by cameras on the traffic
lights and relevant events are reported to the vehicles. Data
processing takes place locally within the traffic light system
to protect the privacy of road users.

IV. OUTLOOK

Currently, we are extending RUCON LiveLab to collect
samples from different devices and different user behaviors.
The computational facilities of the RUCON LiveLab will in-
clude a computational backend, 45 edge nodes and IoT devices
that are spread in the computer science building. We aim to
collect real data traces by utilizing real human environments.
We will perform various code offloading strategies including
machine learning applications such as face recognition or
navigator application as described in our recent ICPE paper
[6]. Further, we plan to use RLL for evaluating proposed
edge data management strategies [7] in the context of efficient
predictive analytics for critical and proactive IoT systems.
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