
Multi-Objective Mobile Edge Provisioning in Small Cell Clouds
Vincenzo De Maio

Vienna University of Technology

Vienna, Austria

vincenzo@ec.tuwien.ac.at

Ivona Brandic

Vienna University of Technology

Vienna, Austria

ivona@ec.tuwien.ac.at

ABSTRACT
In recent years, Mobile Cloud Computing (MCC) has been proposed

as a solution to enhance the capabilities of user equipment (UE),

such as smartphones, tablets and laptops. However, offloading to

conventional Cloud introduces significant execution delays that are

inconvenient in case of near real-time applications. Mobile Edge

Computing (MEC) has been proposed as a solution to this problem.

MEC brings computational and storage resources closer to the UE,

enabling to offload near real-time applications from the UE while

meeting strict latency requirements. However, it is very difficult for

Edge providers to determine how many Edge nodes are required

to provide MEC services, in order to guarantee a high QoS and to

maximize their profit. In this paper, we investigate the static pro-

visioning of Edge nodes on a area representing a cellular network

in order to guarantee the required QoS to the user without affect-

ing providers’ profits. First, we design a model for MEC offloading

considering user satisfaction and provider’s costs. Then, we design

a simulation framework based on this model. Finally, we design a

multi-objective algorithm to identify a deployment solution that is

a trade-off between user satisfaction and provider profit. Results

show that our algorithm can guarantee a user satisfaction above

80%, with a profit for the provider of up 4 times their cost.

ACM Reference Format:
Vincenzo De Maio and Ivona Brandic. 2018. Multi-Objective Mobile Edge

Provisioning in Small Cell Clouds. In Proceedings of 10th ACM/SPEC Interna-
tional Conference on Performance Engineering (ICPE 2019). ACM, New York,

NY, USA, 12 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Mobile Cloud Computing (MCC) attracted significant interest in

the scientific community as a technique to enhance mobile devices’

capabilities. MCC works by offloading computation from the UE

to remote Cloud resources. However, according to [7], MCC can

significantly increase the response time of mobile applications, be-

cause of the geographical distance between UE and Cloud resources.

Such latency can be a huge problem in case of applications with

near real-time requirements.

To this end, Mobile Edge Computing (MEC) has been proposed

as a solution. MEC relies on Edge infrastructures, that enhance

Cloud capabilities by using Edge nodes, geographically closer to

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ICPE 2019, April 7-11, 2019, Mumbai, India
© 2018 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

the mobile devices. By offloading computation to Edge nodes, UE

is able to overcome high latency problems faced in MCC. This way,

they achieve the advantages of computation offloading without

affecting users’ satisfaction.

MEC has been described in [5]. There are several architectural

models for MEC described in literature, such as Small Cell Cloud

(SCC) [29], Mobile Micro Cloud (MMC) [45], Follow Me Cloud

(FMC) [44] and CONCERT [28]. However, in each one of the afore-

mentioned architecturalmodels, it is very difficult for Edge providers

to plan (1) the geographical locations where Edge nodes should be

deployed and (2) how many nodes are necessary to cover a given

area in order to guarantee a high level of user satisfaction. These

factors have a strong effect on providers’ profits. Typical methods

for Cloud provisioning [43] are not suitable for this task, as pa-

rameters such as geographical proximity to the user, that are of

paramount importance for Edge, are not considered in the Cloud

context. Therefore, it is necessary to provide a method to identify

a deployment plan for Edge nodes, providing the required QoS to

the users and maximize providers’ profit at the same time.

In this paper, we design a static provisioning method to find the

location and the number of Edge nodes in a MEC infrastructure.

The proposed methods aims at finding a trade-off solution between

users’ satisfaction and providers’ profit. First, we define models

for (1) user satisfaction, considering application response time and

user cost as parameters; (2) providers’ cost, considering electricity

costs for running a MEC infrastructure composed of geographically

distributed Cloud data centers and Edge nodes located in proximity

of the users. Afterwards, we define a simulation framework, based

on real-world traces of electricity prices and mobile workloads, to

evaluate different provisioning strategies for MEC. Then, we design

a multi-objective algorithm to identify a trade-off solution between

user satisfaction and providers’ cost. Finally, we evaluate our algo-

rithm in comparison with other three provisioning strategies using

the proposed simulation framework.

This work focuses on SCC architecture for MEC, that is used

also in european projects like SESAME
1
. Mobile applications are

simulated generating DAG application models and combined ac-

cording to real-world usage data of mobile applications. Evaluation

employs Monte-Carlo simulation, that allows to accurately model

the variability of remote infrastructure.

Results show that our Multi-Objective algorithm can achieve

(1) a user satisfaction around 80% in a MEC scenario for different

pricing models and (2) a profit for the provider up to 4 times more

the providers’ energy costs, depending on (1) pricing model, (2)

user requirements and (3) the number of UE.

The paper is organized as follows: first, we provide a background

onMEC and SCC in Section 2. Then, we define the theoretical model

1
https://5g-ppp.eu/sesame/

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ICPE 2019, April 7-11, 2019, Mumbai, India Vincenzo De Maio and Ivona Brandic

of our work in Section 3 and our offloading algorithms in Section 4.

In Section 5 we define our experimental setup, while in Section 6 we

present the results of our experiments. Related work is described

in Section 7 and our work is concluded in Section 8.

2 BACKGROUND
2.1 Mobile workload
Amobile workload is composed of an unbounded number of mobile

applications that are executed sequentially by mobile users. Mobile

applications are composed of different interdependent tasks, each

one with different requirements. Dependencies and task require-

ments can affect task offloading: for example, task could not be

offloaded since it needs specific devices, not available on the re-

mote infrastructure (e.g. camera or GPS), or because task execution

depends on another task’s results [13].

2.2 Small Cell Cloud (SCC)

Figure 1: SCC overview

Among different proposals for integrating Cloud/Edge capabili-

ties into mobile network architecture [28, 29, 44, 45], we select a

Small Cell Cloud architecture (SCC), due to the higher maturity of

the standard and the number of research projects involving this

type of architectures, like SESAME
2
. The envisioned SCC archi-

tecture is summarized in Figure 1. SCC is based on the concept

of Small Cell Radio Access Networks (RAN), used in many types

of modern cellular networks such as LTE, featuring short-range

(up to 2 kilometers) small cell base stations (SCeNBs). The main

reason for employing small cells is to boost the spectral efficiency

of modern cellular networks thanks to a shorter distance between

the user equipment and the base station. In SCC architecture, the

capabilities of SCeNBs are improved by adding Edge nodes. Such

nodes will be used to deliver Edge services to end users. To facili-

tate integration of computational resources in this context, a new

entity called Small Cell Manager (SCM) is introduced at each base

station. The SCM is responsible of managing the resources of the

SCeNBs, performing dynamic and elastic management within the

SCC. There are two different ways of deploying SCM: centralized

2
https://5g-ppp.eu/sesame/

and distributed/hierarchical. Although the deployment of central-

ized SCM is easier, we also want to include into this module the

management of Cloud resources, as we show in Figure 1. For this

reason, having a single node managing both Edge and Cloud re-

sources might result in a bottleneck for the whole architecture. For

this reason, we focus on distributed/hierarchical architecture for

this work. We consider then two types of SCM: the local SCM (L-

SCM), responsible for managing resources at the level of SCeNBs or

of clusters of SCeNBs, while the global SCM (G-SCM) is responsible

for resource management between different SCeNBs clusters and

different Cloud resources. In Figure 2 we present an overview of the

functioning of a L-SCM: first, it collects data about the structure of

the applications running on the UEs, as well as the requirements of

each task. At the same time, it collects from the SCeNBs it is man-

aging data concerning (1) the current load of each Edge node and

(2) other environmental parameters, such as local electricity prices.

It also collects data from the SCC to prepare offloading of tasks

to other L-SCMs or to the Cloud, if necessary. From application

structure and requirements a new data structure, named mobile

workload, is generated. The mobile workload contains all the data

relative to the mobile applications that are executed in the SCeNBs

managed by the L-SCM. Using these data, the L-SCM computes

(1) the mobile workload scheduling, containing the scheduling of

single application tasks on UEs, Edge and Cloud nodes and (2) the

local cells management plan for its SCeNBs, containing infrastruc-

ture management instructions. In this work, we focus on the static

provisioning of Edge nodes. We determine the location of the nodes

and how many of them are needed to cover a given urban area. We

also simulate scheduling of mobile workload on the given MEC

infrastructure to evaluate the quality of the proposed provisioning.

Figure 2: L-SCM Overview

3 MODEL
3.1 Application model
First of all, we define mobile applications. Mobile applications are

software artifacts that can be executed by UE. An application A

is defined as a set of interdependent task represented by a DAG

(Directed Acyclic Graph), whose nodes are the tasks and edges

model dependencies between them. Namely,

Multi-Objective Mobile Edge Provisioning in Small Cell Clouds ICPE 2019, April 7-11, 2019, Mumbai, India

Definition 1. A
def

= (TA ,LA), where TA is the set of tasks of
the application A and LA is the set of edges connecting the tasks in
TA .

For each task ti and edge li j we define the vector of the demand

d⃗ (ti)
def

= ⟨SIZE(ti), CPU(ti), DATAin (ti), DATAout (ti), OL(ti)⟩, (1)

respectively, the size of the task ti in millions of instruction, the

number of CPUs required by ti , the size of input/output data and
a boolean value defining whether the task can be offloaded or not.

Concerning edges, we define

d⃗ (li j)
def

= ⟨l(li j), b(li j)⟩ (2)

as, respectively, the maximum latency demand between the two

tasks ti and tj and the minimum bandwidth requirements between

ti and tj .

3.2 Workload model
After defining application, we introduce the concept of mobile work-

load. Amobileworkload is a set ofmobile applications {A0, . . . ,An }

that are executed sequentially. To execute sequentially two appli-

cations A0 and A1 we need to join the applications’ DAGs. To do

this, we employ the join operator ▷◁. The joinA0 ▷◁ A1 gives a new

DAG A ′ = (TA0
∪ TA1

,LA0
∪ LA1

∪ TA0
× TA1

). The edges added
by the join operation are used only to preserve the execution order

and do not affect the normal application execution. Therefore, we

assume without loss of generality that

∀li j ∈ TA0
× TA1

, d⃗ (li j)
def

= ⟨∞, 0⟩.

The join operator is associative and its neutral element is ∅.

Definition 2. A mobile workload for a user equipmentue ,w (ue),
is defined as (1) a single application A or (2) the join of more appli-
cation, formally:

• w (ue)
def

= A;

• w (ue)
def

= A0 ▷◁ A1 ▷◁ . . . ▷◁ An .

By the definition ofw (ue) and the properties of ▷◁ follows that

the join of two workloads is also a workload.

3.3 Map model
In this section we define the map of the area where computational

and mobile nodes are distributed. Concerning the urban area, where

Edge nodes are distributed, we model it as a square hexagonal

grid, as done by many works in mobile cellular networks [20]. The

map M (n) is defined as a m ×m,m,n ∈ N hexagonal grid. We

employ a doubled coordinates system to identify each cell in the

grid. Therefore, we define X coordinates as X = {x ∈ 2N : x < 2m},
and Y coordinates as Y = {y ∈ N : y < n} as in Figure 3. This

coordinate system allows to easily identify each cell using two

(x ,y) coordinates. Each hexagonal cell models a SCeNBs in the

RAN. We assume for simplicity that there is at most one Edge node

per SCeNBs. UEs can access any Edge node in a number of hops

that is equal to the distance between two SCeNB. To calculate the

Figure 3: 3 × 3 hexagonal grid with doubled coordinates.

distance between a UE and Edge node, we employ Equation 3.

dist ((x1,y1), (x2,y2)) = |x1 − x2 |+

max(0,
|x1 − x2 | − |y1 − y2 |

2

). (3)

Concerning Cloud data centers, they are geographically distributed

around the globe and are reachable from the UEs by considering the

latency of the Internet between the UE’s location and the site of the

Cloud data center, loc(ci). These values are defined in Section 5.

3.4 Infrastructure model
The type of infrastructure that we define in this work is a Mobile

Edge Computing (MEC) infrastructure.

Definition 3. We define a MEC infrastructure as a set I =
{MI ,NI ,LI }, where MI is the map of the area where compu-
tational nodes are deployed,NI is the set of computational nodes and
LI the network connections between nodes.

NI is defined as {DI ∪ EI ∪ CI }, where DI is the set of User

Equipments (UE)s, EI the set of Edge nodes and CI the set of cloud

nodes. We define each uei ∈ DI as uei and its resources vector

r⃗ (uei)
def

= ⟨CPU(uei), MIPS(uei), BATTERY(uei), coords(uei),w (uei)⟩,
where CPU(uei) is the number of CPUs in the UE, MIPS(uei) rep-
resents the millions of instruction per second that each CPU of

ue can execute, BATTERY(uei) the energy available in UE’s battery,

coords(uei) the coordinates of the UE on mapM (n) and w (uei)
is the mobile workload of uei . Concerning Edge nodes, their main

characteristics are (1) a limited amount of resource compared to

the cloud nodes, and (2) geographical proximity to the user, in

this case, the UEs [7]. Therefore, we define the resource vector

r⃗ (ei)
def

= ⟨CPU(ei), MIPS(ei), coords(ei),pe (ei , . . .), ce (ei , . . .)⟩ for
each ei ∈ EI , where CPU(ei) is the number of CPUs available on the

nodes, MIPS(ei) represents the millions of instruction per second

that each core in ei can execute, coords(ei) the coordinates of the
Edge nodes on mapM (m,n), pe (ei) the price penalty for execution
on edge node ei (as defined in [31]) and ce the cost of electricity

source of Edge node. We define a Cloud node ci ∈ CI and its re-

source vector as r⃗ (ci)
def

= ⟨CPU(ci), MIPS(ci),pc (ci , . . .), cc (ci , . . .), loc(ci)⟩,
where CPU(ci) is the number of cores available on the node, MIPS(ci)
is the million of instruction per second that ci can execute, p (ci)
is the pricing function for using Cloud resources on node ci (as
defined in [31]) and cc the cost of electricity source available on

the cloud node. Regarding LI , LI = NI × NI . For each link

li j ∈ LI we define the latency between ni and nj as l(ni ,nj),

ICPE 2019, April 7-11, 2019, Mumbai, India Vincenzo De Maio and Ivona Brandic

where l(ni ,ni) = 0, and the bandwidth of the link b(ni ,nj), where
bw(ni ,ni) = ∞.

3.5 UE Battery Lifetime Model
We define UE battery lifetime as the amount of energy left on ue
at a given time instant. Each time a new task ti is assigned to a ue,

the battery value is updated as in:

BATTERY (ue,τ) = BATTERY(ue,τ − 1) − Eue (ue, ti ,τ). (4)

where Ed is the energy, defined as the integral of the instantaneous

power over time. Therefore, we define energy consumption on the

UE ue for task ti .

Eue (ue, ti) =

∫ τend (ti)

0

∑
ti ∈∆(ue,τ)

Pp (ti ,τ)+

+
∑

ti :∆(ti),ue

Poff (ti ,∆(ti),τ) dτ . (5)

Where Pp (ue,τ) is the instantaneous processing power draw on

mobile device ue at the instant τ , Poff (ti ,τ) is the instantaneous
power draw for offloading task.

Mobile device energy consumption model. For energy consump-

tion of mobile device, we employ the CPUmodel of by [3], described

by Equation 6:

Pp (ue,τ) =

i<CPU(ue)∑
i=0

βfreq (i,τ) · Ucpu (ue,τ) + βbase, (6)

where βf r eq (i,τ) is a constant dependent on the frequency of core

i at the instant τ , βbase is a hardware dependent constant and

Ucpu (ue,τ) is the CPU utilization of device ue at the time τ , as
defined by Equation 7.

Ucpu (n,τ) =

∑
ti ∈∆(n) SIZE(ti ,τ)

MIPS(n)
(7)

Energy consumption for offloading. With offloading, input of task

ti are transferred to node nj to be processed, and then output data

are downloaded back to UE. According to [4], energy consumption

of each network transfer is linear with time required by transfer

between two nodes. Transfer time depends on the bandwidth and

latency available on the link and if the node is an Edge or a Cloud

node. Therefore, we model it as in Equation 8,

Pof f (ti ,nj ,τ) = ϵconn (nj) · Unet (ti ,nj ,τ) + Kconn (ni), (8)

where ϵconn (ni) models the relationship between network utiliza-

tion and instantaneous power, whileUnet (ti ,nj ,τ) is network uti-

lization at time instant τ , namely

Unet (ti ,nj ,τ) =
DATAnet (ti ,τ)

b(ue,nj)
, (9)

where DATAnet (ti ,τ) is the amount of data offloaded at time in-

stant τ . Time for transmission between ue and nj is calculated as

DATAin,out
b(ue,nj)

+l(ue,nj) ·dist (coords (ue), coords (nj)), while Kconn (ni)

represents a hardware related constant.

3.6 Deployment model
For the deployment we extend the definition in [31] to workloads.

A workloadw (ue) is a DAG, generated by joining different appli-

cations, therefore same definitions for deployment of applications

can be applied here. Since edges define a precedence order between

tasks, deployment is performed in different time steps. Therefore,

we first define a partial workload deployment for the time instant

τ , ∆(w (ue),I,τ). In each time step we schedule only ready tasks,

namely, the tasks ti ∈ Tw (ue) such that δin (ti ,τ) = ∅. We define

as Tw (ue) (τ) the set of tasks in Tw (ue) that are ready at time step

τ . We define the partial deployment of tasks Tw (ue) (τ) as a set

∆(w (ue),I,τ) of pairs (ti ,nj), with ∆(w (ue),I,τ) ⊆ Tw (ue) (τ) ×
NI , such that

(ti ,nj) ∈ ∆(w (ue),I,τ) ⇐⇒ ti is deployed on node nj . (10)

Also, the partial deployment of mobile workloads inW , namely

∆(W,I,τ)
def

=
⋃
ue ∈DI ∆(W,I,τ). It is possible to deploy more

tasks to the same computational node nj , as soon as r⃗ (ti) ≤ r⃗ (nj).
We define ∆(nj ,τ) as the set of tasks mapped to node nj at instant
τ , namely

ti ∈ ∆(nj ,τ) ⇐⇒ ∃j : (ti ,nj) ∈ ∆(nj ,τ). (11)

We define a valid partial deployment for all workloadsw (ue) ∈ W
on infrastructure I, ∆(W,I,τ). A partial deployment is valid only

if (1) all the tasks are deployed only once on the infrastructure and

(2) all deployments of tasks on nodes satisfy the capacity constraints

of the nodes, namely:

Definition 4. A partial deployment ∆(W,I,τ) of workload
w (ue) on infrastructure I is valid ⇐⇒

(1)

⋃
nj ∈NI ∆(nj ,τ) ⊆ TW (τ);

(2) ∀(ti ,nj) ∈ ∆(W,I,τ) OL(ti) = FALSE =⇒ nj ∈ DI ;
(3) (ti ,nj) ∈ ∆(W,I,τ) ⇐⇒

(4) ∀uei ∈ DI ,
∑ |DI |
i=0 ,Eue (ti) ≤ BATTERY(uei)

(a)

∑
ti ∈∆(nj ,τ) d⃗ (ti) ≤ r⃗ (ni);

(b)

⋃
ti ∈∆(nj ,τ) δin (ti ,τ) ⊆ δin (ni ,τ);

(c)

⋃
ti ∈∆(nj ,τ) δout (ti ,τ) ⊆ δout (ni ,τ);

(d) ∀(ni ,nj) ∈ δin (ti ,τ) l(ni ,nj) ≥ l(ni ,nj),
(ni ,nj) ∈ δin (ni ,τ);

(e) ∀(ni ,nj) ∈ δout (ti ,τ) l(ni ,nj) ≥ l(ni ,nj)
(ni ,nj) ∈ δout (ni ,τ);

(f) ∀(ni ,nj) ∈ δin (ti ,τ) b(ni ,nj) ≤ b(ni ,nj),
(ni ,nj) ∈ δin (ni ,τ);

(g) ∀(ni ,nj) ∈ δout (ti ,τ) b(ni ,nj) ≤ b(ni ,nj
(ni ,nj) ∈ δout (ni ,τ).

Where (1) means that the set of all the tasks allocated to nodes

at time instant τ is embedded or equal to the set of nodes that are

ready at time instant τ ; (2) means that if a task ti is not offloadable

(OL(ti) = false) it is allocated to a UE; (3) means that the energy

consumed for execution or offloading of each task cannot be higher

than the energu budget of each UE; (4) means that for each map-

ping (ti ,nj) all the capacity constraints of the computational nodes

are respected, in terms of CPU and storage (4.a), network connec-

tions (4.b,c) and latency and bandwidth of each link (4,e-g). With a

small abuse of notation, we define also that ∆(ti) refers to the node
where task ti is deployed, namely ∆(ti) = nj : ∃(ti ,nj) ∈ ∆(W,I).

Multi-Objective Mobile Edge Provisioning in Small Cell Clouds ICPE 2019, April 7-11, 2019, Mumbai, India

When task ti terminates its execution at a given instant τ (ti), it
is removed from the DAG. At this point, we perform a partial

deployment of tasks in the set TW (τ (ti)). The set TW (τ (ti)) is ob-
tained removing from LW all the edges in δout (ti ,τ) and adding

to TW (τ (ti)) all the tasks ti ∈ TW such that δin (ti ,τ) = ∅. De-
ployment is complete when TW = ∅. We define a complete deploy-

ment ∆(W,I,τ) as the union of all partial deployments, namely

∆(W,I,τ) =
⋃
τ=[0,τend] ∆(W,I,τ), where τend is the time in-

stant when all the tasks have been deployed.

3.7 Problem definition
In this section we define the optimization problem we want to solve

by extending the definition in [31]. Our goal is to find a deployment

for each mobile workload that (1) minimizes QoS violation, defined

according to different metrics, and (2) maximizes providers’ profit.

We employ the average QoS violation as indication of satisfaction

of user requirements. Also, we define the problem of increasing

providers’ profits as minimizing the operational costs of provider.

The problem definition can be found in in Equation 12. QoS violation

and Provider cost are defined respectively in Sections 3.7.1 and 3.7.4.

In Table 1 we summarize the notation used in this section.




minQoS_V (∆(W∗,I))
min PC (∆(W,I))
With ∆(W∗,I)s .t .Definition 4

(12)

Notation Description
∆(w (ue),I) Deployment ofw (ue) on infrastructure I.

RT (∆(w (ue),I)) Response time of deployment of workload

w (ue) on infrastructure I.

UC (∆(w (ue),I)) User cost for deployment.

rt (ti ,nj) Response time of task ti on node nj .

rtlocal (ti ,ni) Response time of task ti
excluding offloading time.

τ (ti) Time instant when ti becomes ready.

OTup,down (ti ,ue,nj) Time for offloading/downloading task ti
from/to UE ue to/from node nj .

DATAin,out (ti) Input/output data of task ti .

DI Set of UEs in infrastructure I

EI Set of Edge nodes in infrastructure I

CI Set of Cloud nodes in infrastructure I

NI Set of computational nodes in

infrastructure I, NI = DI ∪ EI ∪ CI
LI Set of network links between nodes in NI .

MI (m,n) Map of the urban area.

Table 1: Notation summary.

3.7.1 QoS Violation. Wedefine the requirements for a UE q⃗os (ue) =
{r∗, c∗} as the QoS requirements for its workload execution, respec-

tively for workload response time and user cost. We define the

average QoS violation for workloadW as

QoS_V (∆(W,I)) =
1

|DI |

∑
ue ∈DI

|q⃗os (ue) −O (∆(w (ue),I) |

q⃗os (ue)

(13)

where

O (∆(w (ue),I)) = ⟨RT (∆(w (ue),I)),UC (∆(w (ue),I))⟩. (14)

In the following sections we define RT (∆(w (ue),I)) (Section 3.7.2),

UC (∆(w (ue),I)) (Section 3.7.3).

3.7.2 Response time. The workload response time is defined as

RT (∆(W,I)) = τend (W), (15)

where τend is the time when TW = ∅. For each task ti , rt (ti) de-
pends on the response time of ti on a nodeni , namely rtlocal (ti ,ni),
the time for offloading task ti to node ni , OTup (ue, ti ,ni) and the

time for downloading results of task execution, OTdown (ue, ti ,ni).
We define rtlocal (ti ,ni) as follows:

rtlocal (ti ,ni) =
SIZE(ti)

MIPS(ni)
(16)

Offloading time OTup depends on data transferred to ∆(ti) and
bandwidth available between user equipment ue and ∆(ti). Offload-

ing ti requires transfer of input data DATAin (ti). Then, OTup and

OTdown are defined as

OTup,down (ue, ti ,nj) =
DATAin,out
b(ue,nj)

+ l(ue,nj)

· dist (coords (ue), coords (nj)). (17)

Finally, we define the response time of a task ti on node nj as

rt (ti ,nj) = τ (ti) +OTup (ti ,ue,nj) + rtlocal (ti ,nj)

+OTdown (ti ,ue,nj), (18)

where τ (ti) is the instant at which the task ti is assigned to a node.

Clearly, if task is executed on a UE, rt (ti ,ue) = rtlocal (ti ,ue), as
b(ue,ue) = ∞ (See Section 3.4).

3.7.3 User cost model. Execution cost of each task ti depends on
(1) location of task deployments ∆(ti), (2) task response time RT (ti)

and (3) task demands d⃗ (ti). The cost for deploying a workloadW

is defined as the sum of the costs of execution of each task, as in

UC (∆(W,I))
def

=
∑

ti ∈TW

cost (ti ,∆(ti)). (19)

Typical pricing strategies used for Cloud are not applicable to the

Edge contexts [1, 2]. Therefore, cost model for execution of task ti
on a node nj is defined as follows:

cost (ti ,nj)
def

=




(1) 0, nj ∈ DI

(2)
∫ r t (ti ,nj)
τstar t (ti)

π (ti ,τ ,nj) dτ , nj ∈ CI

(3)
∫ r t (ti ,nj)
τstar t (ti)

π (ti ,τ) +
∫ r t (ti ,nj)
τstar t (ti)

pe (ti ,τ ,η),

nj ∈ EI
(20)

where case (1) means that no price is paid for execution on UE.

Otherwise, in case (2), if ti is offloaded to the Cloud, the user will

pay the instantaneous price required by the provider for using

resources required by task ti at instant τ , defined as

π (ti ,τ ,nj) = pcores (τ ,nj) · CPU(ti)+

pstoraдe (τ ,nj) (DATAin (ti) + DATAout (ti)). (21)

ICPE 2019, April 7-11, 2019, Mumbai, India Vincenzo De Maio and Ivona Brandic

If the task is offloaded on Edge, the user pays the price he/she

would pay on the Cloud, plus a price penalty pe . Such penalty is

added because execution on Edge increases the value perceived

by the user because of the reduced latency. Also, the additional

cost for deploying nodes in urban areas, in proximity of the user

forces providers to ask for a higher price. Therefore, this additional

pe should maximize both provider’s revenue and user satisfaction.

We also would like that such penalty is adjustable to the value

perceived by the user. Therefore, we define pe with an additional η
parameter that models if user prefers a lower latency or a cheaper

price. We define the pe (ti ,τ ,η) function in Equation 22 by slightly

modifying the model proposed in [31].

pe (ti ,τ ,η) =
Tf (ti)

η
−

√
η · π (ti ,τ ,∆(ti)) +Tf

η2 ·minnj ∈EI RT (ti ,nj)
, (22)

where Tf =
∑
ni ∈CI

l(ue,ni)
|CI |

+ 1

CPU(ni)
−
∑
nk ∈EI

l(ue,nk)
|EI |

and η

is a value between 0.01 and 1, where a value closer to 0.01 means

that user prefers to have lower latency, while a value closer to 1

indicates that user prefers price over latency. In [50] it is shown

that this function maximizes both providers’ revenue and users’

satisfaction, making it a possible pricing model for Edge.

3.7.4 Provider cost. In this section we define the costs for the

provider. Among the different MEC infrastructure management

costs, we consider only electricity cost of the infrastructure.

Energy model. Our energy model is inspired to the piecewise

model in [11]. Since we consider only CPU utilization, energy con-

sumption of a MEC infrastructure I is defined as the integral of

instantaneous power of the computational node Pn over time τ :

E (∆(W,I)) =

∫ RT (∆(W,I))

0

PI (τ) dτ , (23)

The instantaneous power consumption of a MEC infrastructure I

is given by the sum of instantaneous power consumption of each

computational node in I, as defined in Equation 24.

PI (τ) =
∑

ni ∈EI∪CI

P (ni , t), (24)

As defined in [11], instantaneous power consumption of a compu-

tational node is composed of a idle part, Pidle , and a active part,

Pactive . Therefore, power consumption of a single computational

node is defined as

P (nj ,τ) = Pidle (nj ,τ) + Pactive (nj ,τ), (25)

While Pidle is a hardware defined constant, we define the power

consumption of a computational node as in Equation 27.

P
l
(nj ,τ)

def

=α (nj) · Pr (nj) · Ucpu (nj ,τ) (26)

P
h
(nj ,τ)

def

=γ (nj) · Pr (nj) + (1 − γ (nj)) · Pr (nj)·

· Ucpu (nj ,τ);

P (nj ,τ) =

{
Pl (nj ,τ), Ucpu (nj ,τ) ≤ T (nj);
Ph (nj ,τ), otherwise.

(27)

where T (nj) is the load at which the trend changes on node nj ,
Ucpu (nj , t) is the CPU utilization as defined in Equation 7, Pr (nj) =
Pmax (nj) − P

idle
(nj), where Pmax (nj) and P

idle
(nj) are maximum

and idle power consumption of node nj , and α (nj) and β (nj) are
the coefficients for low (i.e. ≤ T (nj)) and high (i.e. > T (nj)) CPU
load.

Energy cost. according to [46], costs for energy change over time,

depending on different factors such as temperature and fluctuations

of the local energy market. In this work, we assume that price

depends on the time instant τ and the location of the computational

node. Therefore, we first define instantaneous energy cost of a

single computational node as

EC (nj ,τ) = penerдy (loc(nj),τ) · P (nj ,τ). (28)

Afterwards, by applying Equation 23, we can obtain the energy cost

of the whole execution of deployment ∆(W,I). Since providing a

pricing model for energy is outside the scope of this work, we simu-

late values of penerдy (loc(nj),τ) by reading real-world electricity

traces coming from different markets, as described in Section 5.

4 MULTI-OBJECTIVE ALGORITHM
Finding a infrastructure plan I given (1) a set of computational

nodes NI , (2) the links between each node LI and (3) the map

M (m,n) is an optimization problem with two objectives, as defined

in Equation 12. Since it is not possible to find a single solution that

minimizes provider costs and QoS Violation at the same time, we

want to choose our solution among a set of non-dominated solutions
called Pareto-set. Definitions of dominance and Pareto-set can be

found in [12, 18]. A Pareto-set can be found with multi-objective

meta-heuristics, such as MOPSO [23] and NSGA-II [12]. We focus

on on NSGA-II meta-heuristic, due to the better performance in

comparison with other meta-heuristics [48]. The pseudocode of our

method is described in Algorithm 1. The input for our algorithm

is the mobile workload, the available links between UE and other

computational nodes and the number and geographical positions of

Cloud nodes. The output is the number and the locations on themap

MI (m,n) of the Edge nodes in EI . Since this planning is performed

at the time MEC infrastructure is deployed, we focus on obtaining

a robust plan, rather than on the response time of the algorithm.

First, we perform several samplings of the infrastructure in parallel.

Algorithm 1 Monte-Carlo method

1: function FindPlan(W, NI, LI,MI)
2: E∗ ← ∅ ▷ the set of all Edge plans generated by the algorithm

3: i ← 0

4: while i < I ter do
5: LI ← sampleQoS (LI)
6: NI ← sampleU EPosit ion (DI)
7: E∗ ← E∗ ∪ MOPLAN(W, NI, LI,MI)
8: nI ter ← nI ter + 1
9: end while
10: HE ← computeHistoдram (E∗)
11: HE ← f il ter (HE, thr) ▷ Remove if frequency < thr
12: EI ← aPoster ior iDecision (EI)
13: return I = I ∪ EI
14: end function

In each sampling, we randomly generate (1) the number of cores

available on Cloud nodes and Edge nodes, (2) the QoS provided by

the links between each UE and the computational nodes and (3) the

coordinates of UEs in the mapMI (m,n). After this, we generate a
set of solutions for the Edge nodes planning, that in the following

Multi-Objective Mobile Edge Provisioning in Small Cell Clouds ICPE 2019, April 7-11, 2019, Mumbai, India

iterations are combined using evolutionary operators, like crossover

and mutation, described in the following sections. At each iteration,

the fitness of each solution is evaluated and used to decide which

one will be kept for the future iterations. At the end of the iterations,

we compute ranking and crowding distance, as described in [12], to

identify the Pareto set. At the end of all the iterations, we calculate

the histogram of possible plans, by computing the frequency of each

solution contained in the Pareto-sets generated in each iteration.

Afterwards, we select the solutions with the higher frequency in

the histogram and perform a-posteriori decision making to select

our deployment. MOPLAN algorithm is described in Algorithm 2.

The parameters we employ are summarized in Table 2. In the next

sections, we describe each phase of the MOPLAN algorithm.

Parameter Value
Population size 25

Parent selection Binary tournament

Crossover operator Uniform crossover

Crossover probability 0.9

Offspring 2

Mutation probability
1

m ·n
Max iterations 50

Table 2: NSGA-II parameters

Algorithm 2 NSGA-II based planning of Edge nodes

1: functionMOPLAN(W, NI, LI)
2: E∗

0
← дeneratePopulation (populationSize,MI)

3: evaluateF itness (W, NI ∪ E
∗
0
)

4: nI ter ← 0

5: while nI ter < maxI ter do
6: E∗nI ter ,0 ← crossover (E∗nI ter , crossoverProbabil ity)
7: E∗nI ter ,1 ←mutate (E∗nI ter ,0,mutationProbabil ity)
8: evaluateF itness (E∗nI ter ,1)
9: E∗nI ter ← select ion (E∗nI ter ,0, E

∗
nI ter ,1)

10: nI ter ← nI ter + 1
11: end while
12: return E∗nI ter
13: end function

Generation of initial population. First of all, we have to describe

how the initial population is generated. In this phase, we need to use

a very efficient algorithm, allowing us to use it all the time MOPLAN
is invoked, and also allowing to explore the whole search space. For

this reason we employ Algorithm 3. We generate populationSize
random setup of Edge nodes on the map. Initialization of Edge

nodes (line 9) depends on the specifications available for each Edge

nodes, as defined in Section 3.4.

Fitness evaluation. In order to evaluate the fitness of each plan,

we have to calculate QoS violation and Provider cost obtained

by scheduling workloadW with the given plan. To do this, we

simulate scheduling ofW by generating a topological sort of the

tasks inW using the rank function described by Equation 29.

rank (ti) =



rt(ti) if ti is the exit task.

rt(ti) +maxtj ∈δout (ti) (OT(tj) + rank (tj))
(29)

Algorithm 3 Generation of initial population

1: function generatePopulation(populationSize,MI)
2: E∗ ← ∅

3: p, i, j, k ← 0

4: for p < populationSize do
5: EI ← ∅

6: for i < m do
7: for j < n do
8: if rand () < 0.5 then
9: ek ← initEdдeNode ()
10: coords (ek) ← (i, j)
11: EI ← EI ∪ ek
12: k ← k + 1
13: end if
14: end for
15: end for
16: E∗ ← E∗ ∪ EI
17: end for
18: return E∗
19: end function

Where RT(ti) is the average running time of task ti calculated

over each node in NI , namely RT(ti) =

∑
nj ∈NI r tlocal (ti ,nj)

|NI |
, while

OT(ti) is the average offloading time for task ti , OT(ti) =

∑
nj ∈NIOT (ti ,ue,nj)

|NI |
.

The ranks for each task determine the order in which each node has

to be scheduled for execution. After this, each task is put in a pri-

ority queue and extracted according to the rank. Afterwards, each

task is scheduled according to the Earliest Finish Time, as in [42],

considering the nodes that respects constraints in Definition 11.

Crossover. Two solutions (parents) in the population E∗ are com-

bined to generate two new ones (offspring). Parents are selected

using Binary Tournament Selection [6]. After selection, a random

number is generated: if it is greater than crossover probability,

the two parents are returned as offspring; otherwise, offspring are

generated by using a uniform crossover [40].

Mutation. Mutation operator works by changing the setting of a

cell in the map. First, it picks a random cell in the map: if there is no

Edge node in that cell, it adds to a node ek+1 to the solution. If there
is a node instead, it removes the node assigned to that cell from

the current solution. Mutation operator is applied with probability,

mp =
1

m ·n , to ensure that in average one assignment of the map

MI (m,n) is modified.

Selection. The goal of this phase is to select the best solutions

inside the old population and the offspring generated in current

iteration. To do this, the best n solutions available in both popula-

tions are selected to be part of the new population, discarding the

others. Selection criteria are ranking and crowding distance [12].

A-posteriori decisionmaking. Finally, we select one solution among

all the solutions in Pareto set. We select the solution who gives the

less cost for the provider. If there are two or more solution with

the same cost, we choose the one with the lower QoS violation.

Since this solution is selected among the Pareto set obtained by the

solution of the problem defined in Equation 12, it is going to be a

solution that minimizes the cost for the provider, but at the same

time is satisfactory for the user, being a non-dominated solution.

ICPE 2019, April 7-11, 2019, Mumbai, India Vincenzo De Maio and Ivona Brandic

Livelab Entry DAG Probability

’com.facebook.Facebook’ Facebook 0.45

’com.apple.Maps’ Navigator 0.30

’com.mymobileapps.ichesseval’ Chess 0.10

’com.apple.mobileslideshow-Photos’ Facerec 0.10

’com.shavedham.pantiescannerlite’ Antivirus 0.05

Table 3: Probability distribution of each application accord-
ing to their frequency in LiveLab traces.

5 EXPERIMENTAL SETUP
5.1 Simulation framework
Evaluation is performed using simulation based on real-world

traces, due to unavailability of a MEC infrastructure at the time

we write. After evaluation of different simulators for Edge, like

iFogSim [21] and EdgeCloudSim [39], we decided to base our simu-

lation on the extended version of FogTorchPi described in [31]. The

reason of this choice is that it provides validated models for both

mobile applications and Edge/Cloud infrastructure. We extend this

version by adding support for (1) mobile workloads based on real-

world traces, (2) multiple user environment and (3) price model for

electricity based on US electricity market. The simulator is available

online (https://bitbucket.org/vindem/fogtorchpi-extended). The in-

put for the simulator consists in real-world traces for mobile work-

load and the infrastructure setup, consisting of description computa-

tional nodes and network connections parameters. The simulation

covers one year of MEC infrastructure operations. Each simulation

is run 100 times, to ensure that the average value for each metric

falls in a confidence interval of 95%. Since many valid deployments

can be generated in each iteration, we store them in a histogram

and consider only the most frequent.

5.2 Mobile workload
In [31] there are different types of DAG simulating mobile appli-

cations, but it is not described how to use such DAGs to simulate

a real-world execution of a mobile application. To this end, we

employ the LiveLab mobile application usage traces [36], available

online
3
. These traces collects data about usage of different mo-

bile applications on iOS over 12 months from 25 undergraduate

users from Rice University, therefore are representative of the typi-

cal workload of a mobile user. Based on these data, we randomly

generate for each user traces of one year execution based on the

probabilities in Table 3. Where probability is calculated based on

the frequency of the selected application over all the entries of the

Livelab database. When we do not have an exact match between

the LiveLab entry and the DAGs in [31], we try to find the closest

match between the entry: for example, since we could not find an

Antivirus application in Livelab database, to calculate its frequency

we use another application that is used for scanning malware who

exhibits a similar functioning. Concerning the requirements of each

application, we generate them using the exponential distribution

with the parameters identified by [31].

3
http://livelab.recg.rice.edu/traces.html

Area name Extension (km2) Number of UEs
Hernals 11.35 900

Leopoldstadt 19.27 2025

Simmering 23.23 3600

Table 4: Data about each area.

5.3 Geographical distribution

Figure 4: Cloud data center locations

For simulation of geographic distributionwe imagine three urban

areas of different size, selected among the neighborhoods in the

city of Vienna. Data about these areas are summarized in Table 4.

The embedding of SCC in the urban area is done by generating the

smallest square grid that is able to cover that area and considering

only the cells that are included in that area. The number of UEs

is calculated as 25 · AREA
2

, where 25 is the number of users per

cell that is used in LiveLab traces, AREA is the size of the area we

are considering in km2
and 2 is the area of each SCeNB in km2

, as

estimated in several works targeting SCC [1]. Concerning instead

the locations of Cloud data centers, we use the locations defined

in [30], that are shown in Figure 4. For electricity costs of Edge

nodes, we consider the prices for St. Ghislain, the closest to Vienna.

5.4 Computational nodes
We assume that CPU, RAM and storage specifications of Cloud

nodes, as well as UE specifications, do not change during each dif-

ferent run of the simulation. This is because in real world scenarios,

hardware configuration of computational nodes is rarely changing

during one single application execution.We assume that Edge nodes

have less capabilities than Cloud nodes in terms of cores, MIPS,

RAM and storage [7]. The hardware specifications and hardware

resources cost for each node are shown in Table 5. Concerning UE,

we need to consider also energy consumption for the calculation

of battery lifetime. We use the energy model defined in [31], with

the energy consumption coefficients specified by [4]. Concerning

energy consumption of computational nodes, we use data coming

from [11] for the Equations 25. Regarding energy prices, we use

traces available online from the U.S. electricity market, since they

provide us granularity on the level of 5 minutes. For non-U.S. lo-

cations, we use the same data, shifted accordingly to time zone, as

done also by [30]. Coefficients are summarized in Table 6.

5.5 Network infrastructure
Due to the unreliability of connections inMEC infrastructure (caused

by mobility, environmental factors and reduced availability of Edge

nodes), we need to accurately model the unreliable connections

https://bitbucket.org/vindem/fogtorchpi-extended
http://livelab.recg.rice.edu/traces.html

Multi-Objective Mobile Edge Provisioning in Small Cell Clouds ICPE 2019, April 7-11, 2019, Mumbai, India

nj CPU MIPS CPU MEM

∈ NI cost cost

c-* 64 15 0.03 0.01

e-* 16 15 0.03 0.01

ue-* 2 4 0 0

Table 5: Hardware configu-
ration.

Coefficient Value

βfreq 6.9320

βbase 625.25e − 6
ϵ3д 0.025e − 6
K3д 3.5e − 6
ϵwif i 0.007e − 6

Kwif i 5.9e − 6

α 5.29

γ 0.68

Pidle 501

Pmax 840

T (h) 0.12

Table 6: Energy coefficients
for Equations 6 and 8.

between UEs and Edge/Cloud nodes to perform an accurate sim-

ulation. The QoS provided by each link is modelled li ∈ LI as

a random variable r ′(li) = ⟨l(li), b(li)⟩. By our assumption, each

node is reachable by the mobile device using two different types of

connections: 3G and WiFi. Which connection is available at a given

time is determined by a uniform random variable. If both are avail-

able during the execution, the faster between the two is selected.

For the QoS, we use the probability distribution of FogTorchPI [8]

which is summarized in Table 7. l = ∞ and b = 0 means that there

is no connection between the two computational nodes. For Cloud

offloading, also Internet transmission delay has to be considered,

that is estimated by [14] to be between 100 and 300 milliseconds.

Since we expect this value to be close to the average, we model it

as a Gaussian random variable with µ = 200 and σ = 33.5.

ConnectionAvailability

QoS profile

ProbabilityLatencyBandwidth

(ms) (Mbps)

3G 0.75
54 7.2 0.9957

∞ 0 0.043

WiFi 0.25

15 32 0.9

15 4 0.09

∞ 0 0.01

Table 7: Network availability distribution.

6 EVALUATION
We define the two evaluation metrics used in this section, derived

from the objectives defined in Section 3.7. First, we define provider
profit as the difference between user and provider cost, namely

PP (∆(W,I))
def

=
UC (∆(W,I)) − PC (∆(W,I))

PC (∆(W,I))
. (30)

also, we define user satisfaction as the opposite of QoS violation,

US (∆(W,I))
def

= 1 −QoS_V (∆(W,I)). (31)

6.1 Results
The comparison is performed between our proposed method (MO-

PLAN) and three other methods, respectively (1) MCC, an approach

where no Edge node is used. Offloading is performed only on Cloud

nodes; (2) ALLCELLS, where an Edge node is placed on each SCeNB

in the map; (3) RANDOM, where Edge nodes are placed using the

random algorithm described in Algorithm 3. From our theoretical

modeling in Section 3, the main parameters affecting user satisfac-

tion are the workload runtime and the price of Cloud resources.

These parameters affect also providers’ profit, since users are will-

ing to pay the cost of additional computational resources only if

this helps them in obtaining better performance. For this reason,

we perform an analysis of the user cost model (Section 6.1.1) and

of the runtime (Section 6.1.2). Both definitions can be found in

Sections 3.7.2 and Section 3.7.3. In all the following experiments,

provider profit is calculated according to Equation 30, while for

user satisfaction we employ Equation 30. The q⃗os (ue) considered
for calculation of user satisfaction is obtained by assigning to rt∗

and uc∗ respectively to the minimum value for runtime and user

cost among all the solutions obtained by the selected algorithms.

To simulate different amount of system load, we vary the number

of UEs for each of the selected areas as in Table 4.

6.1.1 Price model analysis. We evaluate the behavior of the pro-

posed algorithms using different pricing models. The different

pricing is simulated by varying the η parameter described in Sec-

tion 3.7.3. We vary it in the range {0.01, 0.2, 0.5, 0.7, 1.0}, which

allows us to simulate a wide range of prices for Edge resources.

Since our focus is on the pricing model, we set the demand vector

of each user to ⟨∞, 0⟩, meaning that the user does not impose any

constraint on minimum latency and maximum bandwidth. Con-

cerning results for provider profit (see Figures 5a-5c), we see that

our algorithm is able to reach a profit up to five times more in com-

parison to the electricity cost, according to the cost model selected.

The highest profit is reached when η = 0.01, to which however

corresponds the lowest degree of user satisfaction, due to the higher

prices for Edge resources. Also, we can observe significant losses

when using the other two algorithms, ALLCELLS and RANDOM.

In the first case this is because the algorithm overestimates the

number of Edge nodes that is necessary for the number of users,

while in the latter is because the position of Edge nodes is selected

randomly and therefore might not be able to provide geographical

proximity to users. This is even clearer when looking at Figure 7a,

where we see how many Edge nodes are selected by the algorithm

for each area. As we can see, regardless of the comparable num-

ber of Edge nodes deployed by MOPLAN and RANDOM, the user

satisfaction is significantly higher when employing MOPLAN al-

gorithm, showing that the geographical proximity to the user is

more important than the number of Edge nodes used. Results for

User satisfaction are summarized in Figures 6a-6c. As we can see,

our Multi-Objective algorithm (MOP) is capable of achieving a user

satisfaction above 80% in most of the cases, sometimes getting very

close to the value obtained by the ALLCELL algorithm, that is the

one providing the highest quality of service, since it deploys Edge

nodes in each SCeNB in the map, without thinking about provider

costs for deployment. It must also be noted that MCC, the case

where no Edge node is deployed, has a user satisfaction always less

than 80%. This is because the additional latency required to reach

Cloud nodes significantly reduces the quality of service provided

to the users and therefore theirs satisfaction in using the service,

ICPE 2019, April 7-11, 2019, Mumbai, India Vincenzo De Maio and Ivona Brandic

-1

 0

 1

 2

 3

 4

 5

ALL RAND MOP MCC

Pr
ov

id
er

 p
ro

fit

ALGORITHM

eta=1.0
eta=0.7
eta=0.5
eta=0.2

eta=0.01

(a) HERNALS.

-1

 0

 1

 2

 3

 4

 5

ALL RAND MOP MCC

Pr
ov

id
er

 p
ro

fit

ALGORITHM

(b) LEOPOLDSTADT.

-1

 0

 1

 2

 3

 4

 5

ALL RAND MOP MCC

Pr
ov

id
er

 p
ro

fit

ALGORITHM

(c) SIMMERING.

Figure 5: Provider profit for different areas d = ⟨∞, 0⟩,η = {0.01, 0.2, 0.5, 0.7, 1.0}.

 0

 20

 40

 60

 80

 100

ALL RAND MOP MCC

U
se

r
Sa

tis
fa

ct
io

n
[%

]

ALGORITHM

(a) HERNALS.

 0

 20

 40

 60

 80

 100

ALL RAND MOP MCC

U
se

r
Sa

tis
fa

ct
io

n
[%

]

ALGORITHM

(b) LEOPOLDSTADT.

 0

 20

 40

 60

 80

 100

ALL RAND MOP MCC

U
se

r
Sa

tis
fa

ct
io

n
[%

]

ALGORITHM

(c) SIMMERING.

Figure 6: User satisfaction for different areas d = ⟨∞, 0⟩,η = {0.01, 0.2, 0.5, 0.7, 1.0}.

showing the benefits of deploying Edge services in this context.

Also, according to our experiments, the best compromise between

user satisfaction and provider profit is η = 0.7.

 0

 20

 40

 60

 80

 100

 120

 140

ALL RAND MOP

N
um

be
r

of
 E

dg
e

no
de

s

ALGORITHM

Hernals
Leopoldstadt

Simmering

(a) Price model evaluation.

 0

 20

 40

 60

 80

 100

 120

 140

ALL RAND MOP

N
um

be
r

of
 E

dg
e

no
de

s

ALGORITHM

Hernals
Leopoldstadt

Simmering

(b) Response time evaluation.

Figure 7: Number of Edge nodes for both experiments

6.1.2 Response time evaluation. In this section, we perform an

evaluation of how user satisfaction and provider profits change

according to users’ requirements. To this end, in this experiment,

we simulate strict latency requirements for each mobile workload

by setting the latency requirement of each link to different values.

Requirements are generated using an exponential distribution with

λ = {500, 1000, 1500, 2000}ms . These values were selected in order

to simulate different latency requirements typical of Edge applica-

tions. Bandwidth is set to 0.1 Mbps. Concerning price model, we

set η = 0.7, as in our Section 6.1.1 seems to be the best choice both

for user satisfaction and for provider profit. Results for user satis-

faction are summarized in Figures 9a-9c, while results for provider

profit can be found in Figures 8a-8c. We do not show results for

MCC in this case, since for the latency requirements settings it was

impossible to find a valid deployment in all the cases. As we see,

MOPLAN clearly outperforms the other two algorithms in terms of

providers’ profit, getting close to achieve a profit of almost 3 times

more the electricity cost. Concerning user satisfaction, we see that

MOPLAN gets really close to the best result, obtained by ALLCELL,

with an average difference of 10% from it. However, as we see from

Figure 7b, where we show the number of Edge nodes used by each

algorithm, this is achieved through a strong overprovisioning of

the infrastructure, with a negative effects on profit. It is also of note

that the average number of Edge nodes required by each algorithm

is slightly higher in comparison with the previous experiment: this

is because the stronger latency requirements need a higher number

of nodes in proximity to the UE to be satisfied.

7 RELATEDWORK
MEC is described as a key technology towards 5G by [25] and it

is of great interest for scenarios like IoT [34]. In [32], a dynamic

offloading scheme for MEC has been proposed, but focused on

energy-harvesting devices. Works like [9, 26] focus on MCC, and

more on the side of offloading than on provisioning. Other works

discuss proposals of MEC architectures, such as Small Cell Cloud

(SCC) [29], Mobile Micro Cloud (MMC) [45], Follow Me Cloud

(FMC) [44] and CONCERT [28]. In this work, we focus on SCC.

Multicell MEC has been discussed in works like [35], from the

point of view of computational and radio resources optimization.

Concerning computation offloading in the context of MEC, works

like [32, 33] investigate partial offloading of single applications,

while works like [15, 41, 49] analyze the benefits of offloading for

Multi-Objective Mobile Edge Provisioning in Small Cell Clouds ICPE 2019, April 7-11, 2019, Mumbai, India

-1

 0

 1

 2

 3

 4

 5

ALL RAND MOP

Pr
ov

id
er

 p
ro

fit

ALGORITHM

latency=500
latency=1000
latency=1500
latency=2000

(a) HERNALS.

-1

 0

 1

 2

 3

 4

 5

ALL RAND MOP

Pr
ov

id
er

 p
ro

fit

ALGORITHM

(b) LEOPOLDSTADT.

-1

 0

 1

 2

 3

 4

 5

ALL RAND MOP

Pr
ov

id
er

 p
ro

fit

ALGORITHM

(c) SIMMERING.

Figure 8: Provider profit for different areas, d = ⟨{500, 1000, 1500, 2000}, 0.1⟩,η = 0.7

 0

 20

 40

 60

 80

 100

ALL RAND MOP

U
se

r
Sa

tis
fa

ct
io

n
[%

]

ALGORITHM

(a) HERNALS.

 0

 20

 40

 60

 80

 100

ALL RAND MOP

U
se

r
Sa

tis
fa

ct
io

n
[%

]

ALGORITHM

(b) LEOPOLDSTADT.

 0

 20

 40

 60

 80

 100

ALL RAND MOP

U
se

r
Sa

tis
fa

ct
io

n
[%

]

ALGORITHM

(c) SIMMERING.

Figure 9: User satisfaction for different areas, d = ⟨{500, 1000, 1500, 2000}, 0.1⟩,η = 0.7

real-world mobile applications, such as augmented reality, acceler-

ated web browsing and speech recognition, respectively. Regarding

provisioning, there are several works for provisioning in Cloud [22],

but very few focus on MCC. In [27], a multi-objective provisioning

approach for UltraScale systems is discussed. Concerning Edge

computing, works like [16, 38] focus on resource provisioning and

management for IoT services, while in [37, 47] author focus on

provisioning considering only QoS as an objective. Workload mod-

els have been used by works like [17] for evaluation of resource

management systems.

8 CONCLUSION AND FUTUREWORK
The main contributions of this paper are the following: first, we

describe our vision of MEC in a SCC scenario. Then, we design

a model for MEC in SCC by extending the work in [31] to con-

sider multiple users, geographically distributed data centers and

provider profits. After, we design a multi-objective algorithm based

on NSGA-II metaheuristic to identify a Pareto-front solution be-

tween user satisfaction and providers’ profit. Then, we evaluate

the proposed solution using Monte-Carlo simulations based on

real workload traces from LiveLab [36] and real prices from elec-

tricity market. Our results show that our algorithm on MEC can

ensure a user satisfaction of above 80% and a profit up to 4 times

providers’ electricity cost. As future work, we plan to extend this

work by considering different MEC systems, such as Mobile Micro

Cloud (MCC) [45], FollowMe Cloud (FMC) [44] and CONCERT [28].

Also, in the current work we did not consider mobility of UEs. We

would like to extend it by including mobility models for wireless

networks, as in [19], or also for vehicular ad hoc networks [24].

Also, to improve accuracy of our simulations, we will investigate

different types of simulation frameworks, such as agent-based sim-

ulations [10]. Finally, at the current state, our algorithm is used only

for planning the number of Edge nodes required for a given area

and the physical location for each node. In the future, we plan to

extend it to make it capable of dynamically change the state of the

Edge (e.g. shutting down nodes to save energy, perform migration

for resilience reasons) according to load conditions and different

user requirements.

ACKNOWLEDGMENTS
Thework described in this paper has been funded through the Haley

project (Holistic Energy Efficient Hybrid Clouds) as part of the

TU Vienna Distinguished Young Scientist Award 2011 and Rucon

project (Runtime Control in Multi Clouds), FWF Y 904 START-

Programm 2015.

REFERENCES
[1] A. Ahmed and E. Ahmed. [n. d.]. A survey on mobile edge computing. In 2016

10th International Conference on Intelligent Systems and Control (ISCO). 1–8.
[2] May Al-Roomi, Shaikha Al-Ebrahim, Sabika Buqrais, and Imtiaz Ahmad. 2013.

Cloud Computing Pricing Models: A Survey. International Journal of Grid and
Distributed Computing 6, 5 (2013), 93–106.

[3] FarhanAzmat Ali, Pieter Simoens, TimVerbelen, Piet Demeester, and Bart Dhoedt.

2016. Mobile device power models for energy efficient dynamic offloading at

runtime. Journal of Systems and Software 113 (2016), 173 – 187.

[4] Niranjan Balasubramanian, Aruna Balasubramanian, and Arun Venkataramani.

2009. Energy consumption in mobile phones: a measurement study and im-

plications for network applications. In Proceedings of the 9th ACM SIGCOMM
conference on Internet measurement conference. ACM, 280–293.

[5] Michael Till Beck, Martin Werner, Sebastian Feld, and S Schimper. 2014. Mobile

edge computing: A taxonomy. In Proc. of the Sixth International Conference on

ICPE 2019, April 7-11, 2019, Mumbai, India Vincenzo De Maio and Ivona Brandic

Advances in Future Internet. Citeseer, 48–55.
[6] Tobias Blickle and Lothar Thiele. [n. d.]. A Comparison of Selection Schemes

Used in Evolutionary Algorithms. Evol. Comput. 4, 4 ([n. d.]), 361–394.
[7] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. 2012. Fog

Computing and Its Role in the Internet of Things. In Proceedings of the First
Edition of the MCC Workshop on Mobile Cloud Computing (MCC ’12). ACM, 13–

16.

[8] A. Brogi, S. Forti, and A. Ibrahim. [n. d.]. How to Best Deploy Your Fog Ap-

plications, Probably. In 2017 IEEE 1st International Conference on Fog and Edge
Computing (ICFEC). 105–114.

[9] Valeria Cardellini, Vittoria De Nitto Persone, Valerio Di Valerio, Francisco

Facchinei, Vincenzo Grassi, Francesco Lo Presti, and Veronica Piccialli. 2016.

A game-theoretic approach to computation offloading in mobile cloud comput-

ing. Math. Program. 157, 2 (2016), 421–449.
[10] G. Cordasco, C. Spagnuolo, and V. Scarano. 2016. Toward the New Version of

D-MASON: Efficiency, Effectiveness and Correctness in Parallel and Distributed

Agent-Based Simulations. In 2016 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW). 1803–1812. https://doi.org/10.1109/

IPDPSW.2016.52

[11] Vincenzo De Maio, Gabor Kecskemeti, and Radu Prodan. 2016. An Improved

Model for Live Migration in Data Centre Simulators. In Proceedings of the 9th
International Conference on Utility and Cloud Computing (UCC ’16). ACM, 108–

117.

[12] K. Deb, A. Pratap, S. Agarwal, and T.Meyarivan. 2002. A fast and elitist multiobjec-

tive genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation
6, 2 (2002), 182–197.

[13] Maofei Deng, Hui Tian, and Bo Fan. [n. d.]. Fine-granularity based application

offloading policy in cloud-enhanced small cell networks. In 2016 IEEE International
Conference on Communications Workshops (ICC). 638–643.

[14] M. DeVirgilio, W. David Pan, L. L. Joiner, and D. Wu. [n. d.]. Internet delay

statistics: Measuring internet feel using a dichotomous Hurst parameter. In 2013
Proceedings of IEEE Southeastcon. 1–6.

[15] J. Dolezal, Z. Becvar, and T. Zeman. 2016. Performance evaluation of computa-

tion offloading from mobile device to the edge of mobile network. In 2016 IEEE
Conference on Standards for Communications and Networking (CSCN). 1–7.

[16] Konstantinos Douzis, Stelios Sotiriadis, Euripides G. M. Petrakis, and Cristiana

Amza. 2018. Modular and generic IoT management on the cloud. Future Genera-
tion Comp. Syst. 78 (2018), 369–378.

[17] Martyn Ellison, Radu Calinescu, and Richard F. Paige. 2018. Evaluating cloud

database migration options using workload models. J. Cloud Computing 7 (2018),

6.

[18] Hamid Mohammadi Fard, Radu Prodan, and Thomas Fahringer. 2014. Multi-

objective list scheduling of workflow applications in distributed computing in-

frastructures. J. Parallel and Distrib. Comput. 74, 3 (2014), 2152 – 2165.

[19] Ansgar Fehnker, Peter Höfner, MaryamKamali, and VinayMehta. 2013. Topology-

Based Mobility Models for Wireless Networks. In Quantitative Evaluation of Sys-
tems, Kaustubh Joshi, Markus Siegle, Mariëlle Stoelinga, and Pedro R. D’Argenio

(Eds.). Springer Berlin Heidelberg, 389–404.

[20] S. Govindasamy and I. Bergel. 2018. Uplink Performance of Multi-Antenna

Cellular Networks With Co-Operative Base Stations and User-Centric Clustering.

IEEE Transactions on Wireless Communications 17, 4 (April 2018), 2703–2717.
[21] Harshit Gupta, Amir Vahid Dastjerdi, Soumya K. Ghosh, and Rajkumar Buyya.

2016. iFogSim: A Toolkit for Modeling and Simulation of Resource Management

Techniques in Internet of Things, Edge and Fog Computing Environments. CoRR
abs/1606.02007 (2016).

[22] Kishaloy Halder, Umesh Bellur, and Purushottam Kulkarni. 2012. Risk Aware

Provisioning and Resource Aggregation Based Consolidation of Virtual Machines.

In 2012 IEEE Fifth International Conference on Cloud Computing, Honolulu, HI,
USA, June 24-29, 2012. 598–605.

[23] Jiang Hao, Zheng Jin-hua, and Chen liang jun. [n. d.]. Multi-Objective Particle

Swarm Optimization Algorithm Based on Enhanced ϵ -Dominance. In 2006 IEEE
International Conference on Engineering of Intelligent Systems. 1–5.

[24] J. Harri, F. Filali, and C. Bonnet. 2009. Mobility models for vehicular ad hoc

networks: a survey and taxonomy. IEEE Communications Surveys Tutorials 11, 4
(Fourth 2009), 19–41. https://doi.org/10.1109/SURV.2009.090403

[25] Yun Chao Hu, Milan Patel, Dario Sabella, Nurit Sprecher, and Valerie Young. 2015.

Mobile edge computingâĂŤA key technology towards 5G. ETSI white paper 11,
11 (2015), 1–16.

[26] M. H. Jiang, Otto W. Visser, I. S. W. B. Prasetya, and Alexandru Iosup. [n. d.].

A mirroring architecture for sophisticated mobile games using computation-

offloading. Concurrency and Computation: Practice and Experience 30, 17 ([n. d.]),
e4494.

[27] Dragi Kimovski, Sashko Ristov, Roland Mathá, and Radu Prodan. 2018. Multi-

objective Service Oriented Network Provisioning in Ultra-Scale Systems. In

Euro-Par 2017: Parallel Processing Workshops, Dora B. Heras, Luc Bougé, Gabriele
Mencagli, Emmanuel Jeannot, Rizos Sakellariou, Rosa M. Badia, Jorge G. Barbosa,

Laura Ricci, Stephen L. Scott, Stefan Lankes, and Josef Weidendorfer (Eds.).

Springer International Publishing, Cham, 529–540.

[28] J. Liu, T. Zhao, S. Zhou, Y. Cheng, and Z. Niu. 2014. CONCERT: a cloud-based

architecture for next-generation cellular systems. IEEE Wireless Communications
21, 6 (2014), 14–22.

[29] F. Lobillo, Z. Becvar, M. A. Puente, P. Mach, F. Lo Presti, F. Gambetti, M. Gold-

hamer, J. Vidal, A. K. Widiawan, and E. Calvanese. 2014. An architecture for

mobile computation offloading on cloud-enabled LTE small cells. In 2014 IEEE
Wireless Communications and Networking Conference Workshops (WCNCW). 1–6.

[30] Drazen Lucanin and Ivona Brandic. 2016. Pervasive Cloud Controller for Geotem-

poral Inputs. IEEE Trans. Cloud Computing 4, 2 (2016), 180–195.

[31] V. De Maio and I. Brandic. 2018. First Hop Mobile Offloading of DAG Computa-

tions. In 2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGRID). 83–92.

[32] Y. Mao, J. Zhang, and K. B. Letaief. 2016. Dynamic Computation Offloading

for Mobile-Edge Computing With Energy Harvesting Devices. IEEE Journal on
Selected Areas in Communications 34, 12 (2016), 3590–3605.

[33] O. MuÃśoz, A. Pascual Iserte, J. Vidal, and M. Molina. [n. d.]. Energy-latency

trade-off for multiuser wireless computation offloading. In 2014 IEEE Wireless
Communications and Networking Conference Workshops (WCNCW). 29–33.

[34] Dario Sabella, Alessandro Vaillant, Pekka Kuure, Uwe Rauschenbach, and Fabio

Giust. 2016. Mobile-edge computing architecture: The role of MEC in the Internet

of Things. IEEE Consumer Electronics Magazine 5, 4 (2016), 84–91.
[35] S. Sardellitti, G. Scutari, and S. Barbarossa. 2015. Joint Optimization of Radio and

Computational Resources for Multicell Mobile-Edge Computing. IEEE Transac-
tions on Signal and Information Processing over Networks 1, 2 (2015), 89–103.

[36] Clayton Shepard, Ahmad Rahmati, Chad Tossell, Lin Zhong, and Phillip Kortum.

2011. LiveLab: Measuring Wireless Networks and Smartphone Users in the Field.

SIGMETRICS Perform. Eval. Rev. 38, 3 (Jan. 2011), 15–20.
[37] Olena Skarlat, Matteo Nardelli, Stefan Schulte, Michael Borkowski, and Philipp

Leitner. 2017. Optimized IoT service placement in the fog. Service Oriented
Computing and Applications 11, 4 (2017), 427–443.

[38] O. Skarlat, S. Schulte, M. Borkowski, and P. Leitner. 2016. Resource Provisioning

for IoT Services in the Fog. In 2016 IEEE 9th International Conference on Service-
Oriented Computing and Applications (SOCA). 32–39. https://doi.org/10.1109/

SOCA.2016.10

[39] C. Sonmez, A. Ozgovde, and C. Ersoy. [n. d.]. EdgeCloudSim: An environment for

performance evaluation of Edge Computing systems. In 2017 Second International
Conference on Fog and Mobile Edge Computing (FMEC). 39–44.

[40] Gilbert Syswerda. 1989. Uniform Crossover in Genetic Algorithms. In Proceedings
of the 3rd International Conference on Genetic Algorithms. Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, 2–9.

[41] N. Takahashi, H. Tanaka, and R. Kawamura. 2015. Analysis of Process Assignment

in Multi-tier mobile Cloud Computing and Application to Edge Accelerated Web

Browsing. In 2015 3rd IEEE International Conference on Mobile Cloud Computing,
Services, and Engineering. 233–234.

[42] Haluk Topcuouglu, Salim Hariri, and Min-you Wu. [n. d.]. Performance-Effective

and Low-Complexity Task Scheduling for Heterogeneous Computing. IEEE Trans.
Parallel Distrib. Syst. 13, 3 ([n. d.]), 260–274.

[43] David Villegas, Athanasios Antoniou, Seyed Masoud Sadjadi, and Alexandru Io-

sup. 2012. An Analysis of Provisioning and Allocation Policies for Infrastructure-

as-a-Service Clouds. In 12th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing, CCGrid 2012, Ottawa, Canada, May 13-16, 2012. 612–619.

[44] Kaiqiang Wang, Minwei Shen, Junguk Cho, Arijit Banerjee, Jacobus Van der

Merwe, and Kirk Webb. 2015. MobiScud: A Fast Moving Personal Cloud in

the Mobile Network. In Proceedings of the 5th Workshop on All Things Cellular:
Operations, Applications and Challenges (AllThingsCellular ’15). 19–24.

[45] Shiqiang Wang, Guan-Hua Tu, Raghu Ganti, Ting He, Kin Leung, Howard Tripp,

Katy Warr, and Murtaza Zafer. 2013. Mobile micro-cloud: Application classifica-

tion, mapping, and deployment. In Proc. Annual Fall Meeting of ITA (AMITA).
[46] RafaÅĆ Weron. 2014. Electricity price forecasting: A review of the state-of-the-

art with a look into the future. International Journal of Forecasting 30, 4 (2014),

1030 – 1081.

[47] Ashkan Yousefpour, Ashish Patil, Genya Ishigaki, Inwoong Kim, Xi Wang,

Hakki C. Cankaya, Qiong Zhang,Weisheng Xie, and Jason P. Jue. 2018. QoS-aware

Dynamic Fog Service Provisioning. CoRR abs/1802.00800 (2018).

[48] Cristian Zambrano-Vega, Antonio J. Nebro, José García-Nieto, and José Fran-

cisco Aldana Montes. 2017. Comparing multi-objective metaheuristics for solving

a three-objective formulation of multiple sequence alignment. Progress in Artifi-
cial Intelligence 6 (2017), 195–210.

[49] Yuan Zhang, Hao Liu, Lei Jiao, and Xiaoming Fu. 2012. To offload or not to

offload: An efficient code partition algorithm for mobile cloud computing. In 2012
IEEE 1st International Conference on Cloud Networking (CLOUDNET). 80–86.

[50] Tianchu Zhao, Sheng Zhou, Xueying Guo, Yun Zhao, and Zhisheng Niu. [n. d.].

Pricing policy and computational resource provisioning for delay-aware mobile

edge computing. 2016 IEEE/CIC International Conference on Communications in
China, ICCC 2016 ([n. d.]).

https://doi.org/10.1109/IPDPSW.2016.52
https://doi.org/10.1109/IPDPSW.2016.52
https://doi.org/10.1109/SURV.2009.090403
https://doi.org/10.1109/SOCA.2016.10
https://doi.org/10.1109/SOCA.2016.10

	Abstract
	1 Introduction
	2 Background
	2.1 Mobile workload
	2.2 Small Cell Cloud (SCC)

	3 Model
	3.1 Application model
	3.2 Workload model
	3.3 Map model
	3.4 Infrastructure model
	3.5 UE Battery Lifetime Model
	3.6 Deployment model
	3.7 Problem definition

	4 Multi-Objective Algorithm
	5 Experimental Setup
	5.1 Simulation framework
	5.2 Mobile workload
	5.3 Geographical distribution
	5.4 Computational nodes
	5.5 Network infrastructure

	6 Evaluation
	6.1 Results

	7 Related Work
	8 Conclusion and future Work
	Acknowledgments
	References

