Journal of Grid Computing manuscript No.
(will be inserted by the editor)

Addressing Application Latency Requirements through Edge
Scheduling

Atakan Aral - Ivona Brandic -
Rafael Brundo Uriarte - Rocco De Nicola -
Vincenzo Scoca

Received: 14 December 2018 / Accepted: 12 July 2019

Abstract Latency-sensitive and data-intensive applications, such as IoT or mobile services,
are leveraged by Edge computing, which extends the cloud ecosystem with distributed com-
putational resources in proximity to data providers and consumers. This brings significant
benefits in terms of lower latency and higher bandwidth. However, by definition, edge com-
puting has limited resources with respect to cloud counterparts; thus, there exists a trade-off
between proximity to users and resource utilization. Moreover, service availability is a sig-
nificant concern at the edge of the network, where extensive support systems as in cloud
data centers are not usually present. To overcome these limitations, we propose a score-
based edge service scheduling algorithm that evaluates network, compute, and reliability
capabilities of edge nodes. The algorithm outputs the maximum scoring mapping between
resources and services with regard to four critical aspects of service quality. Our simulation-
based experiments on live video streaming services demonstrate significant improvements
in both network delay and service time. Moreover, we compare edge computing with cloud
computing and content delivery networks within the context of latency-sensitive and data-
intensive applications. The results suggest that our edge-based scheduling algorithm is a
viable solution for high service quality and responsiveness in deploying such applications.

Keywords Edge Computing - Scheduling - Live Streaming

1 Introduction

Cloud Computing is currently the predominant hosting solution for internet services due to
the economical and infrastructural advantages it provides. Indeed, the massive pool of redun-
dant resources characterizing cloud data centers benefits from significantly lower marginal

All authors have contributed equally and are listed alphabetically.

A. Aral - I. Brandic - R.B. Uriarte
Vienna University of Technology, Austria
E-mail: {name.surname } @tuwien.ac.at

R. De Nicola - V. Scoca
IMT School for Advanced Studies Lucca, Italy
E-mail: {name.surname } @imtlucca.it

2 Atakan Aral et al.

costs due to economies of scale and guarantees high level of reliability and dynamism, which
allow the providers to scale up/down the allocated resources based on current needs. As a
significant challenge to this centralized paradigm, rapid progress in smart devices and net-
work technologies has enabled new categories of internet-based services with strict end-to-
end latency requirements and with a vast amount of data to process. Such near real-time
and data-intensive services include live and 360 degrees video streaming, online gaming,
intelligent traffic control, and smart power grids. Since centralized deployment solutions
fail to satisfy strict latency requirements and network architectures will soon become in-
capable of handling a massive amount of data communication, more geographically dis-
tributed approaches are necessary (Satyanarayanan, 2017). Indeed, many cloud providers
already enrich their offers with distributed deployments solutions including Content Deliv-
ery Networks (CDN) and Edge Computing.

Edge Computing proposes to place computation and storage capabilities at the edge of
the network in the form of micro scale data centers as an extension of massive scale cloud
data centers (Shi et al., 2016). This is a highly promising solution for the aforementioned
latency-sensitive services since it allows the deployment of services in close proximity of
their end users to meet response time requirements. Early work on the impact of Edge Com-
puting on service deployment (Hu et al., 2016; Bittencourt et al., 2017) provides insights
its effectiveness in terms of end-to-end service latency, which ensures a higher quality of
service for end users. However, such benefits can be achieved only if service instances are
effectively scheduled on the nodes that satisfy their requirements on latency, bandwidth,
computation capacity, and reliability. In this regard, contextual information (i.e., user, ap-
plication, computation, and network) must be taken into account to find an optimal service
placement (Wang et al., 2017). This would not only maximize the quality of user experience
by decreasing end-to-end latency, but also minimize the backbone network traffic since most
data communication would be local.

Currently, only a few works, mainly in the area of Internet-of-Things, consider service
scheduling for Edge Computing. Existing scheduling solutions borrowed from similar par-
adigms, in particular cloud and CDN, are subject to infrastructure limitations in the context
of Edge Computing, which renders them unsuitable for meeting the requirements of latency-
sensitive services. More specifically, cloud-based solutions depend on the massive pool of
resources, homogeneous network conditions for compute nodes, as well as high reliability
and scalability. CDN paradigm is similar to Edge Computing in the sense that the resources
are distributed and close to users. However, CDN are designed for data-intensive services
rather than for computing intensive ones and computations are still offloaded to the cloud
(Bilal and Erbad, 2017). Hence, CDN scheduling solutions ignore processing capabilities.

In this paper, we propose a score-based edge scheduling framework specifically de-
signed for latency-sensitive, computational and data-intensive services at the edge of a net-
work. Proposed scheduling mechanisms are applicable to virtual machines (VM) as well as
to more light-weight implementations such as containers; for the sake of brevity in the rest
of the paper, we use the term VM for both. For each service instance, our approach identifies
the VM type with the computational and network capabilities that minimizes the response
time for end users without reserving resources in excess. The algorithm first evaluates the
eligibility of available VM types on the edge nodes for hosting a given service by con-
sidering network latency, bandwidth, processing power, and reliability. Then, it schedules
services on the most appropriate VMs according to the overall eligibility scores, to guaran-
tee optimal service quality. We validate our approach by considering a live video streaming
scenario and evaluating how the different deployment solutions, namely Cloud, CDN, and
Edge, affect user response time. Our results clearly demonstrate that an Edge-based deploy-

Addressing Application Latency Requirements through Edge Scheduling 3

ment can effectively improve user response time. Our main contributions are: (i) a novel
Edge scheduling framework for latency-sensitive services; and (ii) an evaluation of different
deployment solutions and scheduling approaches for latency-sensitive services.

This paper is an extended and revised version of (Scoca et al., 2018). Here, the sched-
uling algorithm takes availability into account and the proposed solution considers also the
integration of Edge with Cloud, which turns out to be useful especially when Edge data cen-
ters are saturated. All experiments are revised to take into account these new perspectives.
In the following section, we motivate our work by discussing the benefits of edge-based
deployment for latency-sensitive live video streaming services. In Sec.3, we present our
scheduling approach and in Sec. 4 we introduce the experimental setup for the evaluation
of this approach. We present and discuss numerical results in Sec. 5, whereas we survey the
related literature in Sec. 6. We conclude the paper and discuss future directions in Sec. 7.

2 Motivation
2.1 Use Case Scenario

Smart-phones are widely used for recording and sharing live events thanks to their ubiqui-
tousness and improved video recording capabilities. In mobile live video streaming scenario,
a video recorded by a mobile device is live streamed globally to any number of mobile or
desktop audience. The success of pioneer services such as Meerkat that have been used by
journalists, lecturers, marketing firms, event organizes, etc. has attracted the interest of large
companies such Twitter (Periscope), Facebook (Facebook Live), Google (Youtube Mobile
Live), and IBM (Ustream, IBM Cloud Video). Fig. 1 depicts the major components and
workflow of a live video streaming service, which is discussed in detail in the rest of this
section.

As the foremost operation, raw input media from the camera is encoded into a high-
quality stream by either the local camera encoder or an external one, running on a server
preferably close to the streaming venue. Transcoding is the next step, where new stream in-
stances in different resolutions and bit-rates are created on the fly. As a result, the audience
with different device configurations in terms of network bandwidth, screen resolution and
size can stream a suitable stream and experience a high quality of service. Each transcoded
stream then undergoes the packaging operation. In this step, the streams are split into chunks
of a size that is manageable from the network communication perspective. Packaging op-
eration is carried out based on a streaming protocol (e.g., HLS or HDS), which defines
the chunk length, codecs, container, etc. Finally, the video chunks are delivered to the corre-
sponding audience devices, which are responsible for sorting and merging them, and playing
back video content through a media player.

Deployment of the above described operations on the widely distributed architecture
of Cloud, CDN, and Edge nodes plays a critical role in the engagement of the audience
with the video stream. More specifically, it has a significant impact on the various user
engagement metrics such as join time (i.e., the time between the connection establishment
and the beginning of the playback), buffering ratio (i.e., the percentage of buffering time in a
video) and video quality (Dobrian et al., 2011). Less computation capability at the deployed
servers and longer geographical distance translates to either higher join time and buffering
ratio or lower video quality, which decreases user engagement.

The most widely implemented solution at the moment by the service providers is the
cloud-based deployment. This allows fast scalability of resources in the face of volatile

4 Atakan Aral et al.

Transcoding and packaging

_ Playback
Resolution@Bitrates g D
Encoding Adobe HDS
Sp— 720@2Mbps MPEG-DASH
ps SNV
'u‘ 480@1Mbps Smooth Streaming —
234@240Kb
._’ oﬁ g @ ps Apple HLS
Formats RTMP N
H264 MPEG-TS
H265
AVC /, D
Fig. 1: Live video streaming workflow.
Playback
Transcoding and packaging —
Transcoder Packaging
1080@5Mb - 1080@3Mbps III
ps - — —
CaoaiMbs || - AdobeHDs
.—» P - Apple HLS | [*
_ R —
H26a MPEG-TS D
- AVC
Cloud D

Fig. 2: Cloud-based solution for live streaming services.

workloads caused by, for example, flash crowds. Fig. 2 depicts the simplest form of cloud-
based deployment, where transcoding and packaging operations are carried out in a cloud
data center and directly delivered to the audience from there. As a result, transcoding and
packaging operations enjoy seemingly unlimited resource capacity and elasticity of cloud
data center. Even though, video can be processed quite efficiently in this scenario, delivery of
the media content between a centralized cloud data center and possibly globally distributed
users is the bottleneck. This is because current wide area networks can provide only best
effort guarantee for packet delivery. Considering the geographical distance and high number
of networks hops along the route, link congestion is highly probable, which leads to packet
loss, jitter and low throughput and consequently a low quality of video experience.

To overcome above described issues, the state-of-the-art cloud deployment strategies in-
volve the use of content delivery networks (CDNs) as demonstrated in Fig. 3. Here, another
level of caching is added between the audience and cloud data center. Whereas media pro-
cessing still occurs in the cloud, distribution is offloaded to a CDN provider, which maintains
a network of cache servers in close proximity to the end users. Each user request is then redi-

Addressing Application Latency Requirements through Edge Scheduling 5

Playback
Distribution
Transcoding and packaging D
Transcoder Packaging E F—
- 1080@3Mbps E
- 720@2Mbps _ —»! > EI
.}050@5““’!35 — 480@1Mbps i} ﬁ?g:‘f:&s) L, =
- - > >
Ha64 MPEG-TS E
- AVC D
Cloud D
CDN

Fig. 3: Delivery networks for live streaming services.

rected to the closest cache server with the required version of the video stream. As a result,
bandwidth consumption and network delay between the video processing and the audience
are reduced. Cloud-based and CDN supported video streaming are successfully employed
by many video providers that have fairly static media content in centralized repositories.
However, this approach has significant shortcomings when it comes to live videos originat-
ing from end users. First, problems with the network communication between the recording
device and the cloud data center are still present. Especially in cases that the recorder and
audience are in close proximity (e.g., within the same city), transferring the stream to a re-
mote data center causes unnecessary network traffic. Second, continuous update of the CDN
servers due to the transient nature of live video streaming is inefficient in terms of network
bandwidth and monetary cost. We argue that CDN architecture is insufficient for highly
demanding live video streaming usage.

In this work, we propose an edge-based live video streaming architecture as given in Fig.
4 in order to eliminate above described disadvantages of cloud and CDN-based deployments.
Here, raw video is encoded either locally or at the edge node that is closest to the recorder.
Afterwards, it is distributed to a set of edge nodes in close proximity to the audience for the
execution of transcoding and packaging operations. Different from the cloud-based video
processing, where streams in all possible combinations of bit-rates, resolutions, and proto-
cols have to be generated; only the requirements of the local audience, who are serviced
by a particular edge node, need to be satisfied. This results in efficient utilization of limited
computing capacity of edge servers. Moreover, they have a supplementary task of caching
the video chunks similar to the CDN servers. Hence, each audience is served by the closest
edge node, which generates the stream in the required format.

In summary, encoding, transcoding, and packaging of the live video stream can be car-
ried out close to the recorder and the audience. Consequently, additional network delays and
detours from the shortest route are mostly eliminated. Moreover, similar media processing
performance to cloud computing can be achieved by means of parallelization. Load on the
wide area network is also alleviated since the majority of the data transfer occurs in the local
area, where edge nodes are usually accessible by the user devices through high-bandwidth
wireless connections. All these improvements result in higher quality of experience in play-
back and increase user engagement.

6 Atakan Aral et al.

Transcading and packaging

Playback
Transcoder Packaging
B ;ggo@@;mbsps - AdobeHDS F—
P - Apple HLS | —>
_H264 - MPEG-TS III
Edge Node
Transcoding and packaging Playback
Transcoder Packaging
- 544@1Mbps D
- AdobeHDS5S
- 352@640kbps | | _ Apple HLS]
- _]
_H264 MPEG-TS D
Edge Node

Fig. 4: Edge-based platform for live streaming services.

2.2 Edge Business Models

Despite the potential of Edge computing, the business models of this emerging paradigm are
complex because of the different types of providers, the mobile nature of the services and
their limited scope (e.g., ephemeral or spike processing demands). Many different players
can take part in this market: cloud providers, which want to expand their services and in-
frastructure; Internet service providers (ISPs), which can install computational resources in
their existing infrastructure; and so-called, prosumers, i.e., users with spare computational
resources, who can, at the same time, consume and provide resources. All these actors face
significant challenges to actually enter this market. Cloud providers profiting from the econ-
omy of scale and the centralization of services may have to change their business model to
interact with geographically distributed small data centers. ISPs that do not have provision-
ing of computational resources as core business need to consider them. Prosumers of edge
computing need to acquire the skills and the tools to properly manage services and avoid
resorting to larger providers because of the guarantees they offer.

In addition, service models for edge computing are manifold. The infrastructure and
platform as a service models may work well in scenarios where the same service is provided
to many users, like, e.g., the live video streaming scenario covered in this paper. In these
scenarios, VMs can host services for groups of users. However, their use is not ideal for
applications related to a single user since VMs’ initialization and migration time is relatively
high. For example, when edge computing is employed to complement the computational
power of user’s device to deal with the CPU intensive part of an application, users can share
the same resources (bare-metal servers, VMs, etc). Alternatively, providers need to deploy
lighter solutions, e.g., containers.

Since in edge environments users can be mobile or require seamless service handover,
the single provider model used in cloud is only applicable if large providers own geograph-
ically distributed resources covering the needs of most of its consumers. A solution to this

Addressing Application Latency Requirements through Edge Scheduling 7

problem could be that brokers agree with local resource providers (e.g., private cloud own-
ers), to acquire a share of their infrastructure and create a resource network to be sold to
edge consumers. An alternative could be the creation of edge open markets with low market
entry barriers to increase the number of providers and leverage the adoption of edge com-
puting, while providing a single interface for edge consumers. To this end, the capacity of
blockchain and smart contracts to create a trust layer between participants could be very
useful. Indeed, blockchain and smart contracts have attracted attention from industry and
academia. Several projects are emerging on the area, e.g., (Tuli et al., 2019; Stanciu, 2017),
but there are still many open gaps, such as, defining QoS and pricing policies (Uriarte et al.,
2019, 2016a; Scoca et al., 2017), comparing resource offers and providing seamless han-
dover. For an overview of the challenges and advantages of these solutions, we refer to (Uri-
arte and De Nicola, 2018). The scheduling algorithm we are proposing can be used in any
of these models and by any types of providers. It might only be necessary to introduce some
small extensions to take into account specific aspects, e.g., brokers might need to consider
also costs.

3 A Scheduling Framework for Edge Computing

This work uses the terminology of (Hu et al., 2015), which defines edge networks as ge-
ographically distributed nodes, relatively close to Radio Access Technology (RAT) Base
Stations (BSs). These stations provide to users and edge nodes access to the core network.
Each node, in our context, is a micro data center that grants access to its resources through
different types of Virtual Machines (VMs).

Considering that we focus on latency-sensitive services, the most important service re-
quirement is response time, i.e., the time between a user request and its reply. In this sce-
nario, the response time is mainly composed of processing time and network delay. The
former refers to the time elapsed between the user request and its arrival in the edge node
providing the service. The queuing, user-node distance, and overhead of each hop in the
network route and the available bandwidth are the main metrics that compose the network
delay. Processing time, instead, is calculated based on the VM characteristics and service
specifications and refers to the time necessary to compute a user request, which depends on
the type of VM it is executed and on the service specifications.

We design a resource reservation and scheduling framework, which considers the edge
computing characteristics in the scheduling process to improve the experience of latency-
sensitive application users. Alg. 1 and Fig. 5 illustrate the main steps of our methodology.
For each service, it groups the users based on their location and requirements; evaluates the
network quality of each node, in particular, its connectivity and bandwidth; evaluates the
VM'’s resources and availability with respect to the service requirements; and finally, based
on the combination of these evaluations, schedules the service. These steps are detailed in
the rest of this section with references to the line numbers in Alg. 1.

3.1 User Clustering

Considering the large audience of live video streams, it would be extremely time and re-
source consuming to compute scores for each individual user. Fortunately, consumers and
producers of many edge services are known to exhibit geographical locality (Aral and Ovat-
man, 2018), thus their compute and network requirements are similar. In this work, users

Atakan Aral et al.

Algorithm 1: Latency-Sensitive Scheduling

Data: Service s to be scheduled

Data: Service provider’s latency constraint

Data: Location of the users U = {uj,uz,...,up}
Data: Nodes N = {nj,na,...,n;}

Data: Location of the nodes L = {I},l,..., I}

Data: Types of VMs VM = {v; 1,vi2,...,viq,Vi € N}
Data: Array Q of quality scores for each VM v € VM
Result: The v, scheduled for s.

1 begin

2 Define a set of users’ groups G = {g;,|u; — ;| <€ VYu; €U,V €L};

3 forall n € N do

4 forall g € G do

5 Estimate the network path p, , with the lowest latency 7, , between g and #;

6 Estimate the available bandwidth b;v“ between users in g and the node n and the

required bandwidth bwg on p, ,;
Calculate the connectivity score g, ;. , = u;
Calculate the bandwidth score gy py, s = BandwidthScore(bwg,b~wg‘,,);

XL lgildng;
Gnd = TFL Tl
T (il |
dnbw = Y, el B

forall v € n do
Gv,res = ComputingScore(w, w,);
Gvav = AvailabilityScore(av, dvy);

14 Calculate the g, quality score Q[g,]= — 1 4 1 I
Qvres T dqvav T dng T dn

15 vimg = Scheduler(Q);

16 return vmg;
(51, YMigmal,2))
S5, VM

(S1, S5, - User Clustering (»Network Evaluation® VM Evaluation [Scheduling 52 Yitarge,1)

(SL' VM(\arge,k))

Fig. 5: The scheduling framework.

with similar requirements in close proximity are clustered into user groups in order to re-
duce the complexity and consequently the time of VM evaluation. In this way, computing
only a single overall score for each group of users is sufficient. We first assign each user to
the geographically closest edge node, and then we cluster the users who are assigned to the
same node and have similar compute requirements into a group (line 2). We use three levels
of CPU consumption (low, medium, and high), which represent, for example, different en-
coding length and video resolution requirements of smartphones, tablets, and laptops in the
live streaming use case.

Addressing Application Latency Requirements through Edge Scheduling 9

3.2 Network Evaluation: Connectivity and Bandwidth

The network evaluation is divided into three main phases: calculating the latency between
the previous defined groups and the edge nodes; defining a connectivity score; and a band-
width score.

In our solution, we assume that edge nodes are connected to each other through a net-
work and that users connect to the closest BS. In many cases, however, the service may not
be scheduled in the closest edge node to its user. For example, the edge node might node not
have the type of resources required by the service or it might be overloaded. We, therefore,
need to take into account the latency between groups and the edge nodes. To this aim, we: (i)
represent the edge network as a weighted graph, where each node is a data center in the net-
work, the link between nodes define the connection between data centers and the link weight
describes the estimated network latency between them; and (ii) devised an user-based ap-
proach that, for every group of users g, detects the lowest latency path from a node n to g
by relying on the Dijkstra’s algorithm (line 5). This method is valid since network latency
can be estimated using many different techniques, which range from active monitoring by
sending probes between servers and then measuring the latency, to passive monitoring that
capture information from the network device about network paths (Yu et al., 2015).

With the connectivity score g, € [0, 1] we define the quality of the connectivity between
each user and VM v by evaluating the network routes between user groups and the node n of
v. The input for this process is the previously computed latency. The evaluation of the delay,
executed for every path connecting a user group g to the n node, is computed by a utility
function previously defined by the provider, for example, a sigmoidal function that assigns
values close to 1 if the network delay of the path is under a given value and 0 if over. The

path-based evaluation produces a set of quality scores {qu ¢, Gni.g::--->dnl gy |- later used
to calculate the connectivity final score g, as the mean value of the scores of groups using
this path (line 9).

One of the main factors affecting the overall service quality, as mentioned in Sec.2,
is the available bandwidth of the paths between users and the VM. The bandwidth score
Gnpw € [0,1] represents the available bandwidth for each n. We calculate a bandwidth score
Gnpwg € [0,1] for each shortest path from n to each user group g;. Similar to the delay
evaluation process, we calculate the final bandwidth quality score g, 4, by averaging the
single path quality scores g, py.,,, Weighted by the number of users in each group (line 10).

3.3 Virtual machine evaluation: Resources and Availability

To measure the VM resource evaluation we take into account the expected overall service
load and the load a VM type can handle. For latency-sensitive contexts, estimating fewer
resources than actually required by the application execution may increase considerably the
overall response and the processing time. Our approach computes a score g, s € [0,1] to
evaluate the computational resources of a VM v, similarly to the network evaluation process,
by using a utility function defined by the provider, which compares the number of user
requests that v can be coped with the overall number of requests expected (line 12). Other
utility functions can also be used, for example, the similarity of the new service with other
services running in the same host (Uriarte et al., 2016b) or the performance of the type of
the new service in the target hardware.

Another critical factor for service performance at the edge of the network is the relia-
bility of computational resources. Edge servers are known to be more prone to failures in

10 Atakan Aral et al.

comparison to cloud counterparts (Aral and Brandic, 2017). In this work, we consider tran-
sient failures at edge nodes such as power outage, system restart, memory overflow, etc. We
model the reliability of each node as its historical availability rate, which is shown to be
sufficiently accurate assuming the failures are independent (Aral and Brandic, 2018). De-
sired availability is taken as 100% in order to guarantee the computation capacity promised
by VM resource evaluation. A user-defined utility function computes an availability score
Gvav € 10,1] (line 13).

3.4 Scheduling Latency-Sensitive Services

Given the set s € § of services, the provider P schedules each s on VM type v € ¥/, which can
guarantee the end user service quality. First, we compute for each VM type an overall quality
score ¢,, by calculating the harmonic mean of the connectivity, bandwidth, resource and
availability scores (line 14). Although the harmonic mean is similar to the arithmetic mean
since they both give the same weight to two scores when they are similar, it increases the
importance of smaller values when the gap between two values increases. This guarantees
that very high and very low scores VMs are penalized, which favors a better balance between
the network and computational resources. The output of the VM evaluation is the set Q =
{qv,;---,qu, } of quality scores (line 15).

Then, the scheduling process maximizes the overall quality of the selected VMs, guar-
anteeing the service quality to end users. This process was defined as a binary integer pro-
gramming optimization problem as shown in the formulation below. x;, are binary variables
that take true value only if service s is scheduled to VM type v. The coefficients ¢, on the
other hand, are the VM quality scores calculated by the VM evaluation algorithm, which
represent the suitability of VM type v for service s. The quality of the final scheduling is
maximized by the cost function (I).

maximize Z Z Qs Xsv (I

seESvelV

s. to Y x.=1 Vs (IT)
vel
Y xo<=k We, (I
seS$

where

P 1 if 5 is scheduled on v
Y71 0 otherwise

Additionally, constraint (IT) guarantees that each service is scheduled to a single VM,
whereas (IIT) guarantees that the number of provisioned VMs of type v cannot exceed the
number available instances of that type, k,.

4 Simulation Environment

We developed a simulation environment by extending the EdgeCloudSim framework (Son-
mez et al., 2017), which itself is an edge computing extension to the widely used CloudSim
toolkit (Calheiros et al., 2011). We experiment with several deployment scenarios and sched-
uling policies to cover different aspects of the problem. Moreover, we employ real-world

Addressing Application Latency Requirements through Edge Scheduling 11

resource and workload characteristics, where possible, in order to obtain realistic results.
When real-world traces are unavailable, we resort to synthetic generation via methods that
are shown to be effective by previous studies. The rest of this section describes the simula-
tion environment in detail.

4.1 Deployment Scenarios

We simulate the live video streaming scenario described in Sec. 2 as a use case for the pro-
posed scheduling framework. In this scenario, computation capability and network latency
characteristics of the chosen nodes for the transcoding, packaging, and delivery of live video
have a strong impact on the QoS perceived by the users. We also compare the performance of
Cloud, CDN, Edge and we consider a hybrid solution, where both Cloud and Edge resources
are available.

Cloud: This is the centralized deployment, where the original video is sent to a Cloud data
center and all video processing (i.e., encoding, transcoding, packaging) is carried out in
powerful servers. Video segments are also distributed from the data center to the users, who
request the live stream. Considering the huge computation capacity of a Cloud data center,
resources are modeled as an infinite set of VM instances with specifications taken from the
Amazon Web Services (AWS) m2.4xlarge as reported in Tab. 1. The network communica-
tion between the user and the Cloud data center is modeled with a single 1 Gbps link. This
represents the aggregation of multiple links from user access BSs to the Cloud. To estimate
the communication delay of this link, we made ICMP requests from hosts in Lucca, Italy
and the AWS instances in the same time zone and averaged the experienced latency. In our
experiments, we use the communication delay 3, . = 0.09s to model the latency due to the
queuing and processing operations as well as the physical distance between the user u and
the Cloud data center c.

Content delivery network (CDN): Also in this scenario, the live video is transmitted to and
processed in the Cloud data center. However, distributed cache servers store the video seg-
ments for future requests. Content distribution follows the policy proposed by Pathan and
Buyya (2007). Here, a user request is first redirected to the closest cache server which returns
the content if it is already cached. As a result, an additional delay to the Cloud is avoided.
If the requested content is not available in the cache, the request is forwarded to the Cloud.
In this case, the response is both sent to the user and stored at that cache server. We con-
sider a three-tier network architecture of the users, geographically distributed CDN nodes,
and an origin server in the Cloud data center. In this scenario, the origin and replica (CDN)

Table 1: Virtual machine specifications.

ml.large | ml.xlarge | m2.4xlarge | i3.large
Number of CPUs | 4 8 26 2
CPU (MIPS) 2400 4800 20000 2400
RAM (GB) 8 16 70 15
Storage (GB) 2x420 4x420 2x840 unlimited
Price (USD/h) 0.17 0.35 0.98 0.15

12 Atakan Aral et al.

servers have different purposes and correspondingly different hardware configurations. Ori-
gin server is of type m2.4xlarge similar to the Cloud scenario, whereas replica servers, being
intended for delivering content, have storage optimized i3.large specifications as shown in
Tab. 1. Regarding the network characteristics, CDN nodes feature substantial inter-node and
node-to-cloud distance because they are geographically distributed and co-located with net-
work nodes, such as ISP point of presences (PoPs) or at internet exchange points (IXPs).
However, they are in close proximity to the users, which reduces the user-replica network
latency. Hence, we define a communication delay of 3, , = 0.013s between the user and the
CDN node along with a § = 0.03s for each hop on the path between the CDN and the origin
server. 9, . is approximated by sending a set of ICMP requests from a host to a server distant
around 300km over a 4 hops connection. Access bandwidths of CDN servers are generated
as a Pareto distribution with a mean value of u = 500Mbps, whereas the links between the
Cloud and CDN nodes are of higher capacity with u = 750Mbps, since we assume that they
are directly connected to the ISP backbone. Underlying network topology is described in
Sec. 4.3.

Edge: In this scenario, entire service is deployed on the edge computing servers as de-
scribed in Sec.2. Hence, the cloud data center is only responsible for the management of the
edge nodes, which execute both video processing and distribution operations. We deploy 20
Edge nodes that are co-located with BSs. At each node, we allow 10 VMs of type either
ml.large or m1.xlarge to be instantiated in order to reflect the limited computing power of
Edge nodes. The access bandwidths of edge nodes are modeled as a Pareto distribution with
average value y = 375Mbps. Considering the locality of Edge nodes, we assume that Edge
nodes are in close proximity not only to the user but also to other nodes. Hence, we define
high-speed connections through one-hop dedicated links between Edge nodes, where band-
width values are from a Pareto distribution with a mean value of y = 400Mbps, and latency
from a uniform distribution 2[0.006,0.009]. In this case, we estimated the &, ., values as
the average latency measured from a set of ICMP request sent over a single hop connection
between two hosts within 40 km distance.

Hybrid: This scenario extends the Edge one by merging it with the Cloud approach. It
considers, besides the 20 nodes available in the edge network, also a cloud data center in
the actual service deployment. Intuitively, if there are not enough resources available in the
reserved VM, our solution checks the availability of other VMs in the same host. In case it
is not available, instead of using other edge data centers, which could affect the reservation
scheme provided by the scheduler, it sends the service to a cloud data center. Overall, this
approach provides a hybrid solution that integrates the virtually infinity computation power
of the clouds to edge, which is used only in cases where the edge micro data centers are
saturated. Computation and communication capabilities of the Edge and Cloud nodes are
the same as their respectable scenarios described above.

4.2 Scheduling Scenarios

In addition to the Edge-based scheduling approach proposed in Sec. 3.4, we also implement
a state-of-the-art Cloud-based scheduling approach (Duong et al., 2012) as a baseline.

Addressing Application Latency Requirements through Edge Scheduling 13

Edge-based: We use the utility functions in Eq. 1-4 for the four scores described in Sec.3.3,
namely the network delay, available bandwidth, VM resources, and VM availability. Utility
score for the network delay between a user group g and a virtual machine v (Eq. 1) is
computed via sigmoidal function S. Domain of the function is the ratio of the delay J,, to
the maximum tolerable delay 8 which is set to 50ms. Additive inverse indicates that smaller
O, values are preferred. As a result, delays J,, that are over the requirements S, receive
scores close to 0, whereas the scores within the limits receive scores close to 1. Use of the
sigmoidal function ensures that delays shorter that the requirements are not incentivized.
Other functions are defined in a similar fashion. For the bandwidth score (Eq. 2), available
bandwidth B, is compared to the bandwidth demand B, whereas for the VM resources
(Eq. 3), the computing capability of v expressed in terms of requests per second RPS, is
compared to the expected number of requests W based on the expected workload. Utility
function for the availability (Eq. 4), on the other hand, compares the availability rate of
the node, A,, to the optimal case of 100% availability. In Fig. 6, the functions are plotted
for varying resources availabilities given a request of maximum 50 ms latency, minimum
300 Mbps bandwidth, and capability to process at least 25 requests per second with 95%

availability.
.
1—=5))]

. B.,
utB(Bg.vaB) =S % - 1> (2)

B

~ RPS,
Uy rps(RPS,, W) = S(~S‘ - 1> 3)
w
A,

at) =5 155 1) @

Cloud-based: There exist a plethora of task scheduling algorithms in the context of cloud
computing. We implement the algorithm by Duong et al. (2012) called FIXED provisioning
algorithm as a representative baseline for cloud-based scheduling. This algorithm estimates
the minimum number of streaming engine instances required to meet a tolerable user waiting
time. It proposes a M/M/V? queue to accurately model the system and proactively adjust the
number of instances according to the workload prediction. We provide the pseudo-code of
this algorithm in Alg. 2. Given the estimations for inter-arrival times and durations of the
streaming requests, it begins with calculating an initial set of VMs with the minimum size
(line 2). Then, # is defined as the minimum waiting time to be guaranteed based on the QoS
requirements of the ASP (line 3). The algorithm increases the number of VM instances (line
10) as long as the probability of unacceptable waiting time (calculated in lines 7 and 8) is
higher than a predefined threshold, p (lines 6 to 10). In our edge computing implementation
of the algorithm, the calculated set of streaming engines are randomly instantiated at the
edge nodes.

4.3 Network Topology

Fig. 7 demonstrates the three-tier network, which consists of the cloud, edge or CDN nodes
and user groups. We generate an undirected random network topology graph using the

14 Atakan Aral et al.

0.8 0.8 0.8 0.8

06 06 06 06
= = z =
E E E 5

04 04 04 04

0.2 0.2 02 02

0 0 0 0

0 50 100 0 200 400 600 0 10 20 30 40 50 0 50 100
Network Latency (ms) Bandwidth (Mbps) Requests per Second Availability (%)
(@ (b) © (d)

Fig. 6: Visualization of the utility functions for the requirements of (a) 50 ms latency, (b)
300 Mbps bandwidth, (c) 25 requests/second processing capability, and (d) 95% availability.

Algorithm 2: Cloud-Based Scheduling

Data: Set of QoS requirements offered by the ASP: § = {QoS(x),x > 0}
Data: Estimated mean inter-arrival times: %

Data: Estimated mean requests’ durations: i

Result: Number of VMs to acquire: V

1 begin

2 calculate the smallest number of V such that Viy <1
3 t = min(QoS(x)), QoS(x) € S;

4 Pw(r) >t)=1;

s | op=ih

6 while P(w(r;) >) > p do

7 calculate ITy = (V‘E!)V ((1—p) Z,‘,/;Ol (Vnp,)n %)(71);
8 calculate P(w(r;) > t) = Iy e-VH(1-P))';

9 if P(w(r;) >t) > p then

10 | v=V+I

1 return V

BRITE topology generator (Medina et al., 2001) between the CDN and Edge nodes (shown
with a dashed line in Fig. 7). We employ the Barabdsi—Albert scale-free network generation
model (Barabdsi and Albert, 1999), which is known to accurately represent human-made
systems such as the Internet. It mimics the incremental growth and preferential node con-
nectivity behaviors of such systems. The nodes are added gradually and the new ones link
with higher probability to well-connected nodes called the hubs.

The nodes are placed on a 25 x 25 km grid uniformly at random as shown with black
filled circles in Fig. 8 (a). We assume that these locations are also points of interests (POlIs)
such as faculties in a campus or commercial buildings or recreational areas in a city. Hence,
the users, represented with grey circles, are clustered around these POIs. We use Gaussian
distribution to generate x and y coordinates relative to the coordinates of POlIs, assign each
user to the closest node, and consequently obtain user groups. Note that, the closest node
may not always be the POI for which the user coordinates are generated.

Addressing Application Latency Requirements through Edge Scheduling 15

%4
n
a Tia
tia ® < S
T o
Tia
- |
?‘ - [-¥°% WLAN range.
ﬂ«ﬂ)u 3‘,‘"_ e
. ° - 0e Y
L i
LA . . Ta
a i th

Fig. 7: Edge network infrastructure [color online].

4.4 Mobility

There is a large body of literature regarding human mobility based on observed movements
(Hess et al., 2016). Considering the POI-based edge node placement and user distribution,
we implement a mobility model that is based on real-world check-ins (Fan et al., 2016).
Authors in this work analyzed a massive dataset of 37 million check-in records to understand
the movement behavior of users. They determined the distribution of transition probabilities
between POI’s, which we utilize to represent the probability that a user leaves an edge node
and joins another one.

Specifically, we consider the probabilities that a user stays in the same POI (Py,,), moves
to a new one (P,,,), and returns to the previous one (P,,). Based on the findings of Fan
et al. (2016), Py, is independent of time and follows a normal distribution with an average
value of 0.445. P,,,,, on the other hand, decays as the power law of time, which is given in
Eq. (5). Here, —0.3 is the decaying rate of P,,,,, whereas a is the rate of exploration, that is
the extent that a user explores new places. Finally, P, is calculated as given in Eq. (6).

Py = ax 1703

&)

Preturn =1- (PnEW +Pstay) (6)

Since the transition functions are estimated by fitting to real data, it is possible that
Pyew + Pyay > 1 in some cases. When this happens, we take P,.,, = 1 — Py, instead of Eq.
(5). In our implementation, all POIs have the same attraction level, hence the same transition
probability. However, we restrict the transitions based on geographical proximity. Fig. 8 (b)
presents available mobility paths between edge nodes determined by a distance threshold of
8 units. When a user takes the action to move to a new node, the destination is randomly
selected among the neighbors of the current node, except the previous one.

16 Atakan Aral et al.

w('f@/r
77

25 25

20

(a) (®)

Fig. 8: A schematic representation of edge nodes with network topology and user distribu-
tion (a), and with mobility paths (b).

4.5 Workload

Since, to the best of our knowledge, there are no publicly available data set with information
about the number of viewers joining video streams, we create one based on real-world infor-
mation. The main parameters considered in our scheduler/simulation are: maximum number
of concurrent clients; streaming duration; user arrival rate; and required video quality.

Live video streams can be classified with respect to different parameters, such as the
number and arrival process of viewers and stream duration, as reported in the analysis of live
video streaming workloads carried out in (Sripanidkulchai et al., 2004). Our experiments
focus on small/medium streams, the common stream type in use (in particular in social
networks), which have a peak of less than 1000 concurrent clients, and are short, with a
duration of less than one hour. We modeled the user arrival process with an exponential
distribution, whose mean time between two arrivals (1\A) is 5 seconds. The time each user
spends watching the streaming is defined, instead, by a heavy-tailed distribution modeled as
a “truncated” version of Pareto distribution characterized by a cut-off point at 40 minutes,
where the tail drastically drops off (Sripanidkulchai et al., 2004).

The audience uses various end-devices to access the stream, namely smartphone, tablet
and laptop, and, therefore, the video quality (i.e., resolution and bitrate) changes according to
the device used and bandwidth condition. A smartphone video is encoded in standard defini-
tion in two different resolutions and bitrates, as 640x354 @640Kbps and 416x234 @400Kbps.
A tablet video, instead, is encoded in high definition in two different formats, 1280x720
@4400kbps and 1280x720@2500kbps, having the same resolution but different bitrates.
Finally, a laptop video is encoded in two different full-HD formats, as 1920x1080@3000
and 1920x1080@5000kbps. All these video parameters were retrieved from one of the most
widely used commercial services for live video streaming, namely Youtube'.

I https://support.google.com/youtube/answer/28537022hl=en

Addressing Application Latency Requirements through Edge Scheduling 17

Auvailability of Edge servers is taken from real-world failure traces for Local Domain
Name Servers (LDNS) (Pang et al., 2004). This conforms to our model that Edge servers
are deployed on networking hardware such as ISP point of presences. The data set contains
ping probes to 62,201 LDNS servers, which are initiated at exponential intervals with a
mean of 1 hour. Traces are dated between March 17 to March 24, 2004. We calculate the
observed availability percentage from these traces and also account for the re-initialization
period after each failure.

5 Numerical Results and Discussion
5.1 Comparison of Deployment Scenarios

The aforementioned scenarios are run 10 times with the number of mobile devices ranging
from 400 to 1400. The results in Fig. 9 (a) show that the edge platform (Edge and Hybrid
scenarios) reduces considerable network delay with respect to the other deployment solu-
tions. As the workload increases, Hybrid approach tends to offload more applications to the
cloud, which incurs higher average network delay. In the experiments, the delay of the Edge
scenario is 4 to 5 times less than the Cloud scenario, and around half with respect to CDN.

Processing time represents another critical factor in the total service time. The results
of our simulations are depicted in Fig. 9 (b), which in live streaming scenario, is mainly
composed of the time to prepare the video content to be delivered. Due to the limited pro-
cessing capabilities of edge nodes, they have the highest processing time and become the
system bottleneck as the load increases. Essentially, in the proposed approach, where each
streaming engine instance has to process all the incoming requests from the associated user
device, we experience a faster raise of the processing time since the scaling possibilities are
rather limited due to constrained resource capabilities of the edge nodes. Therefore, predict-
ing in advance a suitable number of VMs represents may lead to better results. In the CDN
scenario, we obtain smaller processing time and less steep rise than in the Edge scenario,
since most of the processing is done in the cloud servers. We observe a sudden decrease in
processing time for the Hybrid scenario when the edge nodes are overloaded and some pro-
cessing is offloaded to the resource-rich cloud servers. Cloud scenario, as expected, results
in the lowest processing time.

As demonstrated by the overall results in Fig. 9 (c), the Hybrid approach outperforms
other scenarios in most cases. It provides similar results to the Edge scenario when the nodes
are not overloaded, and addresses the problem of overloaded nodes in the edge network by
dispatching the applications to the cloud. It merges the advantages of both the edge and
cloud scenarios. Clearly, CDN is not the best solution for latency-sensitive applications if
they also require processing power (e.g., video encoding). Yet, it is still a valid solution in
other scenarios, for example, if only videos with the same characteristics (bitrate, etc) are
present as in offline streaming. Cloud, as well performs poorly since the network latency is
highly disruptive in the live streaming scenario.

5.2 Comparison of Scheduling Approaches
The use of Edge solutions, however, require a suitable service scheduling algorithm as

shown in Fig. 10 (a). Here, both scheduling algorithms are evaluated on the edge deploy-
ment; however, edge-based scheduling outperforms the cloud-based baseline significantly

Atakan Aral et al.

0.18 " . . " 0.14
e PREE * - Edge Fi
e CDN ® - CDN ;
0.16
= Cloud 0.127 |--m-Cloud /
= v Hybrid v Hybrid
20.14 — /
B \5’3/ 0.1
5
2012 2
2 e
g 20.08
% § [IX0Y S— PA—
5 0.08 &~
<
0.06 0.04
0.04 . . : : 0.02 : : : :
400 600 800 1000 1200 1400 400 600 800 1000 1200 1400
Number of Mobile Devices Number of Mobile Devices
(a) (b)
0.2 . ’ i pa———
*-- Edge
0.19 e CDN
= Cloud
0.18 v Hybrid
3017
2
2016
=
8015
g
5
.14
0.13
0.12
0.11 . . : :
400 600 800 1000 1200 1400

Number of Mobile Devices

(©

Fig. 9: Average network delay (a) average processing time (b) and average service time (c)
experienced by the users in the scenario described in Sec. 4.1 [color online].

in terms of experienced network delay. This is due to the joint consideration of network
conditions and user requirements. Fig. 10 (b) demonstrates that proactive estimation of the
number of VM instances results in lower processing time. However, network delay improve-
ment overshadows processing time on average and service time is shorter in nearly all cases
in Fig. 10 (c). The only exception is when the edge nodes are saturated, as in the case of
1400 users. These results underline the need for scheduling solutions that take into account
edge specific features to obtain optimal scheduling.

Addressing Application Latency Requirements through Edge Scheduling 19
0.1 0.13
- Edge-based % Edge-based !
-9 Cloud-based -9 Cloud-based :
0.09
o o
2 o}
8008 . =011
= . A e E
8 e T, "‘ '; o1
x 0.07 £
a H
2 © 0.09
>, 0.06 o *
> o B
< >
< 0.08
0.05 *
-~ . 0.07 Frint M
0.04 - ‘ ‘ ‘ : ‘ ‘ ‘ ‘ ‘
40 600 800 1000 1200 1400 400 600 800 1000 1200 1400
Number of Users Number of Users
(a) (b)
0.19
% Edge-based
0.18 | |--w- Cloud-based
0.17 :!
3
$0.16
g
i 0.15‘
]
S 0.14 ;
b5 B
%] §
20.13 L
B3
0.12 o
Mr e ennrananns Penrnrreenentt e
0.11
0.1 ‘ : : :
400 600 800 1000 1200 1400
Number of Users
©

Fig. 10: Comparison of the average network delay (a) average processing time (b) and aver-
age service time (c) in the edge deployment scenario using a cloud scheduler and the edge
scheduler we developed [color online].

5.3 Analysis of the Impact of User Mobility

In this final experiment, we evaluate the extent to which service quality worsens as users
move over time. We particularly focus on average network delay, which is the most severely
affected metric due to the increased distance between the user and a static VM placement.
We present the results for the edge deployment scenario with the edge-based scheduler and
1000 users in Fig. 11. We consider five mobility scenarios from very low exploration (a =
0.05), which results in 4.47 transitions per minute, to very high exploration (a = 0.50),
which results in 45.09 transitions per minute on average.

20 Atakan Aral et al.

0.058
0.056
0054
0.052
0.05
0.048

0.046

Avg Network Delay (sec

0.044

—a=0.50 —a=0.10
0.042 —a=0.30 —a=0.05

a=0.20

0.04
0 20 40 60

Time (min)

Fig. 11: Impact of user mobility on network delay with various exploration rates [color
online].

Beginning from 42ms, an increase in network delay is observed for all scenarios, albeit
relatively slow in low mobility scenarios. Moreover, high mobility scenarios also stabilize
under 57ms of delay due to the returning behavior of the users as the time passes. Based on
our analysis, the point of stabilization roughly corresponds to the time taken by every user to
make at least one transition (e.g. 22.2 minutes for a = 0.50 or 37.5 minutes for a = 0.30). De-
spite mobility, average network delay of the proposed algorithm is significantly better than
cloud-based scheduling (around 75ms) or CDN deployment (around 89ms). For the optimal
performance and particularly delay-sensitive services, we recommend periodic re-execution
of the scheduling algorithm, which would yield an updated mapping between resources and
services. The execution time of the Alg. 1 is negligible (on the order of seconds) with re-
spect to the re-execution period (possibly on the order of minutes or hours). However, for
the environments with a very high level of mobility and with network delays between the
edge nodes (e.g. vehicular services), other scheduling techniques that focus on elasticity and
user mobility would be more suitable. We discuss such works from the literature in Sec. 6.

6 Related Work

Edge computing refers to the set of technologies (i.e., Mobile Edge Computing (Hu et al.,
2015), Fog Computing (Mahmud et al., 2018) and Cloudlets (Verbelen et al., 2012)), which
perform computation offloading and data storage at the edge of the network aiming at the
reduction of end-user network delay, bandwidth consumption in core network and energy
consumption (Shi et al., 2016). The development of these new technologies is mainly driven
by the advent of the Internet of Things (IoT) services (e.g., real-time analytics and smart city
platforms), generating a massive volume of data to be analyzed that can overwhelm current
cloud-based solution and are characterized by very strict latency requirements (Dastjerdi

Addressing Application Latency Requirements through Edge Scheduling 21

et al., 2016). Edge computing paradigm is proven effective in many scenarios Wang et al.
(2017), however, there still exist open research challenges such as the scheduling on edge
computing services. Computation offloading problem (Zhao et al., 2015; Guo et al., 2016;
Mao et al., 2016), for instance, decides to schedule a task either on the mobile device or lo-
cal/internet cloud. Nevertheless, there is no study that deals with the actual service schedul-
ing on edge nodes, to the best of our knowledge. In the edge area, instead, some preliminary
works have been carried out as reported by Skarlat et al. (2017) but it focuses on the opti-
mization of response time between service components, without taking into account service
users. Aazam and Huh (2015) define a resource estimation and pricing model for IoT, still
without providing a scheduling approach for the service instance placement.

Preliminary evaluation and future research directions for scheduling approaches in edge
scenarios are presented by Bittencourt et al. (2017). The work mainly focuses on users
mobility and on the consequent elasticity requirement for service placement through three
mobility-aware scheduling algorithms; it is also proposed to prioritize low delay applica-
tions in order to improve applications execution. Other works in this direction also consider
handover mechanisms to cope with user mobility and unnecessary handovers via probabilis-
tic (Zhang et al., 2017) and fuzzy logic-based (Basic et al., 2019) approaches. Sun et al.
(2017), on the other hand, add energy efficiency to the equation considering the limited bat-
tery power of typical mobile users. They propose near-optimal mobility management and
handover algorithms based on Lyapunov optimization. As distinct from the aforementioned
works, Plachy et al. (2016) utilize mobility prediction of individual users for the proactive
provisioning of VMs and communication paths. We believe mobility is less critical in the
scenario considered in our work, due to the relatively short-lived nature of live video streams
and wide distribution of users, both of which reduce the probability that users change groups
at run-time. Additionally, since multiple users are served by a single VM, the deterioration
caused by the migration of few users can be circumvented by reassigning them to other VMs
by re-executing the algorithm rather than migrating the original VM.

On the other hand, the service scheduling problem is widely studied in the cloud com-
puting context. Several approaches related to scheduling have been applied to cloud com-
puting, e.g., (Song et al., 2014). However, they are focused on single providers and rely on
a reduced number of variables. In the area of distributed clouds, Papagianni et al. (2013)
propose a framework for efficient mapping of VM user requests on the aggregate set of con-
nected clouds. They modeled the mapping problem as mixed integer programming aiming
to minimize the mapping costs and the number of hops among the VMs. Again in the area
of distributed clouds, Konstanteli et al. (2014) propose a novel approach to tackle the prob-
lem of service allocation in a federated cloud environment for horizontally scalable services.
They define a method that allocates service component replicas taking into account the max-
imum service requirements in terms of computing, networking and storage resources, a set
of affinity and anti-affinity rules for deploying replica in the same node or subnet and the
federated infrastructure costs. They model the allocation problem as Mixed-Integer Linear
Programming optimization problem and implement, then, a heuristic solver that yields to
near-optimal solutions in a very short time. Pittaras et al. (2015) develop an approach for
efficient mapping of virtual networks onto a multi-domain network substrate. They devise a
semantic-based approach for the mapping of requests to real network subnets, which min-
imizes the number of hops between selected nodes. Aral and Ovatman (2016) propose a
novel approach for the problem of mapping virtual networks defined by the set of inter-
connected VMs (i.e., service replicas) on a real infrastructure in a distributed cloud. Their
solution strives to reduce network latency and optimize bandwidth utilization. It follows a
topology-based mapping approach and allocates the virtual network defined by the connec-

22 Atakan Aral et al.

tions among service components on a cloud subnet whose topology is isomorphic to the
virtual one.

Many works are carried out also for QoS-aware service scheduling in the context of a
single cloud provider, more focused, then, on the optimization of service placement within
a single data center. Duong et al. (2012) propose an integrated approach that combines
provisioning and scheduling techniques in order to satisfy both the provider’s revenue and
consumers’ requirements. They devise a provisioning algorithm, based on queuing theory
approaches, for the definition of the number of VMs to be deployed in order to minimize
the user waiting time. Similarly, a rule-based resource provisioning algorithm that employs
fuzzy logic is proposed (Jamshidi et al., 2014) to enable qualitative specification of the elas-
ticity rules. This work also features an elasticity controller, which predicts and copes with
changes in the workload. Zeng et al. (2014) develop an approach that optimizes content dis-
tribution within servers in a data center by jointly optimizing request routing and content
placement. Essentially, they devise a method, which optimize the usage of storage and net-
work capacity based on blocking probability to avoid the starvation of service users. Piao
and Yan (2010), instead, present a VM placement approach for data-intensive applications
that aims to minimize the transfer time between the data centers hosting the data and the
VMs running the services. Therefore, they develop a solution that takes into account the
transfer data time between the hosting data centers and the VMs, define a VM placement
that minimizes the overall system transfer time.

However, none of these approaches can be directly applied for the VM placement in
edge computing since they do not support the specific characteristics of the edge paradigm.
For example, VM placement solutions for federated clouds that minimize inter-node net-
work latency, represent only a partial solution for the VM placement for latency-sensitive
applications at the edge. Indeed, these solutions are not location-aware, that is they do no
take into account user localization, which is a critical feature of the edge paradigm. Defi-
nition of a VM placement that minimizes only the inter-node delay yields to sub-optimal
results since the user-node latency, which accounts for a large part of the overall service
delay, impedes user experience. Moreover, they are not resource-aware and therefore, con-
sidering the limited capabilities of edge nodes, the placement of a VM on edge node, which
cannot provide enough resources to cope with workload peaks, incurs in high service time
due to either the high processing time or the additional delay added by the high rate of VM
migrations.

7 Conclusion

Effective scheduling of services in edge computing scenario is vital due to strict latency re-
quirements and limited resources. Sub-optimal service placement and scheduling may result
in significantly low quality of service and low utilization of resources. To cope with these
issues, we focus on the edge service scheduling problem. We develop a service-driven ap-
proach to maximize the service quality experienced by the users through deploying services
on the most suitable VMs in terms of computational and network resources.

Our proposal is a score-based algorithm that works in two stages. First, it verifies the
eligibility of each available VM type, according to the service network and computational
requirements as well as its reliability. It assigns a quality score to each VM type denoting the
suitability of that VM to host the service to be scheduled. Then, the services are assigned
in a way to maximize the total score of the chosen VMs, thus improving service quality
for end users. To validate the proposed approach, we evaluated the average response and

Addressing Application Latency Requirements through Edge Scheduling 23

processing time as well as network delay experienced by the users in the Edge, CDN, Cloud,
and Hybrid (Edge and Cloud) scenarios. The results obtained demonstrate the validity of
our scheduling approach in the scope of edge computing paradigm. Indeed, the promised
benefits of edge computing can only be achieved when effective scheduling algorithms that
consider its peculiar features are implemented. We believe that our work will bring more
industry and research attention to the barriers to the adoption of edge computing.

As future work, we will enhance the developed solution by decentralizing the optimiza-
tion process, adding another decision output for the number of instances of services, and
considering vertical and horizontal scaling. Moreover, we plan to investigate and integrate
our solution with Software Defined Networks to improve and cope with the latency and
bandwidth requirements of edge applications.

Acknowledgements This work has been partially funded by the Rucon project (Runtime Control in Multi
Clouds), FWF'Y 904 START-Programm 2015, by the European Unions Horizon 2020 research and innovation
programme under the Marie Sklodowska-Curie grant agreement No 838949, and by the Italian National
Interuniversity Consortium for Informatics (CINI).

References

Aazam M, Huh EN (2015) Fog computing micro datacenter based dynamic resource esti-
mation and pricing model for [oT. In: IEEE International Conference on Advanced Infor-
mation Networking and Applications (AINA), IEEE, pp 687-694

Aral A, Brandic I (2017) Quality of service channelling for latency sensitive edge applica-
tions. In: IEEE International Conference on Edge Computing (EDGE), IEEE, pp 166-173

Aral A, Brandic I (2018) Dependency mining for service resilience at the edge. In:
ACM/IEEE Symposium on Edge Computing, ACM, pp 228-242

Aral A, Ovatman T (2016) Network-aware embedding of virtual machine clusters onto fed-
erated cloud infrastructure. Journal of Systems and Software 120:89-104

Aral A, Ovatman T (2018) A decentralized replica placement algorithm for edge computing.
IEEE Transactions on Network and Service Management 15(2):516-529

Barabasi AL, Albert R (1999) Emergence of scaling in random networks. Science
286(5439):509-512

Basic F, Aral A, Brandic I (2019) Fuzzy handoff control in edge offloading. In: IEEE Inter-
national Conference on Fog Computing, IEEE

Bilal K, Erbad A (2017) Edge computing for interactive media and video streaming. In:
International Conference on Fog and Mobile Edge Computing (FMEC), IEEE, pp 68-73

Bittencourt LF, Diaz-Montes J, Buyya R, Rana OF, Parashar M (2017) Mobility-aware ap-
plication scheduling in fog computing. IEEE Cloud Computing 4(2):26-35

Calheiros RN, Ranjan R, Beloglazov A, De Rose CA, Buyya R (2011) Cloudsim: a toolkit
for modeling and simulation of cloud computing environments and evaluation of resource
provisioning algorithms. Software: Practice and experience 41(1):23-50

Dastjerdi AV, Gupta H, Calheiros RN, Ghosh SK, Buyya R (2016) Fog computing: Princi-
ples, architectures, and applications. In: Internet of Things, Elsevier, pp 61-75

Dobrian F, Sekar V, Awan A, Stoica I, Joseph D, Ganjam A, Zhan J, Zhang H (2011) Under-
standing the impact of video quality on user engagement. ACM SIGCOMM Computer
Communication Review 41(4):362-373

24 Atakan Aral et al.

Duong TNB, Li X, Goh RSM, Tang X, Cai W (2012) Qos-aware revenue-cost optimization
for latency-sensitive services in iaas clouds. In: IEEE/ACM International Symposium on
Distributed Simulation and Real Time Applications (DS-RT), IEEE, pp 11-18

Fan C, Huang J, Yang D, Rong Z (2016) Modeling poi transition network of human mobility.
In: International Conference on Cyber-Enabled Distributed Computing and Knowledge
Discovery, IEEE, pp 364-367

Guo X, Singh R, Zhao T, Niu Z (2016) An index based task assignment policy for achieving
optimal power-delay tradeoff in edge cloud systems. In: IEEE International Conference
on Communications (ICC), IEEE, pp 1-7

Hess A, Hummel KA, Gansterer WN, Haring G (2016) Data-driven human mobility model-
ing: a survey and engineering guidance for mobile networking. ACM Computing Surveys
(CSUR) 48(3):38

Hu W, Gao Y, Ha K, Wang J, Amos B, Chen Z, Pillai P, Satyanarayanan M (2016) Quan-
tifying the impact of edge computing on mobile applications. In: Proceedings of the 7th
ACM SIGOPS Asia-Pacific Workshop on Systems, ACM, p 5

Hu YC, Patel M, Sabella D, Sprecher N, Young V (2015) Mobile edge computing—a key
technology towards 5g. ETSI White Paper 11(11):1-16

Jamshidi P, Ahmad A, Pahl C (2014) Autonomic resource provisioning for cloud-based
software. In: International Symposium on Software Engineering for Adaptive and Self-
Managing Systems, ACM, pp 95-104

Konstanteli K, Cucinotta T, Psychas K, Varvarigou TA (2014) Elastic admission control for
federated cloud services. IEEE Transactions on Cloud Computing 2(3):348-361

Mahmud R, Kotagiri R, Buyya R (2018) Fog computing: A taxonomy, survey and future
directions. In: Internet of everything, Springer, pp 103-130

Mao Y, Zhang J, Letaief KB (2016) Dynamic computation offloading for mobile-edge com-
puting with energy harvesting devices. IEEE Journal on Selected Areas in Communica-
tions 34(12):3590-3605

Medina A, Lakhina A, Matta I, Byers J (2001) BRITE: An approach to universal topology
generation. In: Ninth International Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems, IEEE, pp 346-353

Pang J, Hendricks J, Akella A, De Prisco R, Maggs B, Seshan S (2004) Availability, usage,
and deployment characteristics of the domain name system. In: Proceedings of the 4th
ACM SIGCOMM conference on Internet measurement, ACM, pp 1-14

Papagianni C, Leivadeas A, Papavassiliou S, Maglaris V, Cervello-Pastor C, Monje A (2013)
On the optimal allocation of virtual resources in cloud computing networks. IEEE Trans-
actions on Computers 62(6):1060-1071

Pathan AMK, Buyya R (2007) A taxonomy and survey of content delivery networks. Grid
Computing and Distributed Systems Laboratory, University of Melbourne, Technical Re-
port 4

Piao JT, Yan J (2010) A network-aware virtual machine placement and migration approach
in cloud computing. In: International Conference on Grid and Cooperative Computing
(GCCQ), IEEE, pp 87-92

Pittaras C, Papagianni C, Leivadeas A, Grosso P, van der Ham J, Papavassiliou S (2015)
Resource discovery and allocation for federated virtualized infrastructures. Future Gen-
eration Computer Systems 42:55-63

Plachy J, Becvar Z, Strinati EC (2016) Dynamic resource allocation exploiting mobility
prediction in mobile edge computing. In: IEEE International Symposium on Personal,
Indoor, and Mobile Radio Communications, IEEE, pp 1-6

Satyanarayanan M (2017) The emergence of edge computing. Computer 50(1):30-39

Addressing Application Latency Requirements through Edge Scheduling 25

Scoca V, Uriarte RB, De Nicola R (2017) Smart contract negotiation in cloud computing.
In: 2017 IEEE 10th International Conference on Cloud Computing (CLOUD), IEEE, pp
592-599

Scoca V, Aral A, Brandic I, De Nicola R, Uriarte RB (2018) Scheduling latency-sensitive
applications in edge computing. In: CLOSER, pp 158-168

Shi W, Cao J, Zhang Q, Li Y, Xu L (2016) Edge computing: Vision and challenges. IEEE
Internet of Things Journal 3(5):637-646

Skarlat O, Nardelli M, Schulte S, Dustdar S (2017) Towards qos-aware fog service place-
ment. In: IEEE 1st International Conference on Fog and Edge Computing (ICFEC), IEEE,
pp 89-96

Song W, Xiao Z, Chen Q, Luo H (2014) Adaptive resource provisioning for the cloud using
online bin packing. IEEE Transactions on Computers 63(11):2647-2660

Sonmez C, Ozgovde A, Ersoy C (2017) Edgecloudsim: An environment for performance
evaluation of edge computing systems. In: International Conference on Fog and Mobile
Edge Computing (FMEC), IEEE, pp 39-44

Sripanidkulchai K, Maggs B, Zhang H (2004) An analysis of live streaming workloads on
the internet. In: ACM SIGCOMM Conference on Internet Measurement, ACM, pp 41-54

Stanciu A (2017) Blockchain based distributed control system for edge computing. In: 2017
21st International Conference on Control Systems and Computer Science (CSCS), IEEE,
pp 667-671

Sun Y, Zhou S, Xu J (2017) EMM: Energy-aware mobility management for mobile edge
computing in ultra dense networks. IEEE Journal on Selected Areas in Communications
35(11):2637-2646

Tuli S, Mahmud R, Tuli S, Buyya R (2019) Fogbus: A blockchain-based lightweight frame-
work for edge and fog computing. Journal of Systems and Software

Uriarte RB, De Nicola R (2018) Blockchain-based decentralised cloud/fog solutions: Chal-
lenges, opportunities and standards. IEEE Communications Standards Magazine

Uriarte RB, Tiezzi F, De Nicola R (2016a) Dynamic slas for clouds. In: European Confer-
ence on Service-Oriented and Cloud Computing, Springer, pp 3449

Uriarte RB, Tiezzi F, Tsaftaris SA (2016b) Supporting autonomic management of clouds:
Service clustering with random forest. IEEE Transactions on Network and Service Man-
agement 13(3):595-607

Uriarte RB, De Nicola R, Scoca V, Tiezzi F (2019) Defining and guaranteeing dynamic
service levels in clouds. Future Generation Computer Systems

Verbelen T, Simoens P, De Turck F, Dhoedt B (2012) Cloudlets: Bringing the cloud to the
mobile user. In: ACM workshop on Mobile cloud computing and services, ACM, pp 29—
36

Wang S, Zhang X, Zhang Y, Wang L, Yang J, Wang W (2017) A survey on mobile edge net-
works: Convergence of computing, caching and communications. IEEE Access 5:6757—
6779

Yu C, Lumezanu C, Sharma A, Xu Q, Jiang G, Madhyastha HV (2015) Software-defined
latency monitoring in data center networks. In: International Conference on Passive and
Active Network Measurement, Springer, pp 360-372

Zeng L, Veeravalli B, Wei Q (2014) Spacedtime: Optimization latency-sensitive content
service in cloud. Journal of Network and Computer Applications 41:358-368

Zhang H, Qiu Y, Chu X, Long K, Leung VC (2017) Fog radio access networks: Mobility
management, interference mitigation, and resource optimization. IEEE Wireless Commu-
nications 24(6):120-127

26 Atakan Aral et al.

Zhao T, Zhou S, Guo X, Zhao Y, Niu Z (2015) A cooperative scheduling scheme of local
cloud and internet cloud for delay-aware mobile cloud computing. In: IEEE Globecom
Workshops, IEEE, pp 1-6

