
An Energy-Aware Approach to Design
Self-Adaptive AI-based Applications on the Edge

Alessandro Tundo∗, Marco Mobilio∗, Shashikant Ilager†

Ivona Brandić†, Ezio Bartocci†, Leonardo Mariani∗

∗University of Milano-Bicocca
Milan, Italy

{name.surname}@unimib.it

†Vienna University of Technology
Vienna, Austria

{name.surname}@tuwien.ac.at

Abstract—The advent of edge devices dedicated to machine
learning tasks enabled the execution of AI-based applications
that efficiently process and classify the data acquired by the
resource-constrained devices populating the Internet of Things.
The proliferation of such applications (e.g., critical monitoring
in smart cities) demands new strategies to make these systems
also sustainable from an energetic point of view.

In this paper, we present an energy-aware approach for the
design and deployment of self-adaptive AI-based applications that
can balance application objectives (e.g., accuracy in object detec-
tion and frames processing rate) with energy consumption. We
address the problem of determining the set of configurations that
can be used to self-adapt the system with a meta-heuristic search
procedure that only needs a small number of empirical samples.
The final set of configurations are selected using weighted gray
relational analysis, and mapped to the operation modes of the
self-adaptive application.

We validate our approach on an AI-based application for
pedestrian detection. Results show that our self-adaptive appli-
cation can outperform non-adaptive baseline configurations by
saving up to 81% of energy while loosing only between 2% and
6% in accuracy.

Index Terms—self-adaptive, energy-aware, AI-based, multi-
objective, edge computing, internet-of-things

I. INTRODUCTION

Both academia and industry raised the issue of the mas-
sive amount of energy consumed by ICT services and the
rising energy costs [1]–[4]. Reducing energy consumption is a
high priority objective, to wisely use the available resources.
Indeed, building sustainable AI-based applications is a key
technical challenge that engineers are facing nowadays [5].

AI-based applications are increasingly deployed on the
edge, within resource-constrained environments that cannot
indefinitely supply a constant amount of power, such as,
battery-powered devices and computing nodes powered by
renewable energy sources (e.g., photovoltaic panels or wind
turbines) [6]–[8]. Such applications are particularly resource-
intensive, thus, carefully using energy is a key requirement
to feasibly run AI services within these environments. For
example, critical monitoring services for smart cities (e.g.,
pedestrian detection and traffic analysis [9]–[11]), environ-
mental monitoring applications (e.g., wildfire detection [12],
[13], and wildlife monitoring [14], [15]), all require fast

data processing and high accuracy, with cost-effective energy
consumption.

These scenarios require consuming a large volume of data
generated from Internet-of-Things (IoT) sensors in various
forms (e.g., time series values, video streams, images) with
resource-greedy machine learning models (e.g., exploiting
TPUs or GPUs) [5], [16], [17]. In contrast, the feasibility
of scenarios that involve battery-powered devices [18], [19]
depends on the capability of reducing energy consumption to
extend the battery life.

In response to this urge, researchers have investigated sev-
eral approaches to design systems with a controllable and
programmable trade-off among quality, efficiency, and energy
consumption.

Energy-awareness and efficiency research mainly targets
low-level tasks such as scheduling and provisioning [20]–[24],
routing [25], data storage and processing [26], and machine
learning models optimization [27]. Although valuable, only
optimizing the low-level tasks may result in hardly-predictable
performance of the applications. Thus, it becomes challenging
or even impossible to balance competing application-level
objectives (e.g., accuracy, energy consumption, and efficiency)
working only on low-level features.

Other approaches targeted code optimizations [28], analysis
of software energy consumption [29], [30], and architectural
tactics to contain energy utilization [31] and costs [32]. An-
alyzing energy consumption retrospectively to take corrective
actions (e.g., code or architectural refactoring) can be expen-
sive and difficult to control in the long term.

In contrast with previous work, in this paper we investigate
the challenge of configuring (e.g., determining the frame rate,
the image resolution, and the kind of machine-learning model
that an object detection system must use) AI-based edge
applications, to balance energy consumption and application
objectives. Despite this being a common challenge to any edge
application, we target AI-based applications since they are
frequently used in the edge, despite being resource-demanding.

Naively, we could hypothesize to simply systematically and
exhaustively explore the configuration space of an application,
and then determine the best configuration to use. In practice,
there are two main obstacles: the huge cost of the exploration

of the configuration space and the lack of a configuration that
globally optimizes every objective.

Exploring the configuration space of AI-based edge appli-
cations is extremely expensive due to the size of the space,
determined by the high number of configuration parameters
and parameter values, and the cost of sampling, which requires
running multiple experiments, to determine how much a con-
figuration fulfills the energy and application objectives [33].
This cost is even higher in large distributed and heterogeneous
environments, where different nodes or groups of nodes may
require to be optimized individually.

Furthermore, different run-time scenarios usually require
different configurations to be addressed properly. For instance,
detecting objects in situations where the objects to be detected
occur rarely (e.g., detecting pedestrians at night in a peripheral
city area) is completely different from detecting the same
objects in situations where the objects occur densely and
repeatedly (e.g., detecting pedestrians in an area near a stadium
after a concert). Thus, no single configuration can optimize
both accuracy and energy consumption in all circumstances,
but applications need to adapt to changing conditions to behave
optimally.

We address these challenges by proposing an energy-aware
approach that can guide developers to implement an AI-based
self-adaptive application able of switching its operation modes
in response to changes in the environment, finally balancing
energy consumption with the application-level objectives.

In a nutshell, this work provides the following contributions.
An energy-aware approach for the design of AI-based

self-adaptive applications. We present an approach to design
and implement an AI-based self-adaptive application that can
dynamically balance application requirements and energy con-
sumption, according to a behavioral model derived empirically.

A meta-heuristic search procedure combined with a
weighted configuration extraction process. We define a
meta-heuristic search procedure that allows to empirically
sample a tiny portion of the configuration search space, to
finally extract, using weighted gray relational analysis, a
set of configurations that correspond to the operation modes
employed by the self-adaptive system.

A smart city scenario prototype implementation. We
showcase the applicability of the proposed approach by imple-
menting the prototype of an AI-based self-adaptive application
for a pedestrian detection scenario involving a single-board
computer equipped with a camera and a hardware accelerator
(i.e., an Edge TPU).

Empirical evidence of the effectiveness of the approach.
We answer two research questions by performing in-lab exper-
iments and evaluating pedestrian detection scenarios following
real-word pedestrian traffic shapes. Results show that config-
urations obtained through the meta-heuristic search procedure
perform comparably well with respect to the ones obtained by
a near-exhaustive search of the space. The comparison to four
non-adaptive baseline applications shows that the self-adaptive
system is able to self-adapt its operation mode to the pedestrian
traffic shapes saving up to 81% of energy consumption. At the

same time, it guarantees a similar accuracy when compared to
the most accurate configurations, losing between 2% and 6%
only, but outperforming 3 out of 4 non-adaptive applications
on the processing speed gaining between 77% and 233%.

The paper is organized as follows. Section II presents a
Smart Traffic Monitoring (STM) motivational scenario. Sec-
tion III describes our approach, with specific reference to
the motivational scenario. Section IV presents the empirical
results. Section V discusses related work. Finally, Section VI
presents concluding remarks and future work.

II. MOTIVATIONAL SCENARIO

According to the latest report released by Governors High-
way Safety Association (GHSA), nearly 3.500 pedestrians
died in the United States in the first six months of 2022
(+5% from the same period in 2021) [34]. In three years,
pedestrian deaths raised about 18%, that is, nine times faster
than U.S. population growth [35]. Similarly, the European
Transport Safety Council (ETSC) reported 20.600 road deaths
in the EU last year, with vulnerable road users (pedestrians,
cyclists, and users of powered two-wheelers) representing just
under 70% of total fatalities within urban areas [36], [37].
Addressing this critical issue of preventing accidents not only
depends on social education [38] but also requires developing
Smart Traffic Monitoring (STM) systems that enable digital
monitoring of urban traffic [39]–[41], real-time analytics [42],
[43], and intelligent driver assistants [9], [44], [45].

IoT Cameras

AI-Based Self-
Adaptive Applications

Edge Computing Nodes

This image has been designed using images from Flaticon.com

Fig. 1: A pedestrian detection scenario.

An STM system requires continuous monitoring of the
traffic scenarios to identify potential incidents (e.g., the pres-
ence of pedestrians in blind spots) through video streams and
processing frames, and alerting the nearby vehicles through
the use of 5G-enabled edge nodes [9]. Such an STM system
can host hundreds of cameras and sensors deployed to roads
in cities and countryside areas [46].

The edge devices processing video streams are in always-on
mode and potentially powered by batteries or renewable energy
sources at the edge, which is the basis for limited and unreli-
able power supply. Hence, reducing energy consumption and
executing critical emergency applications become extremely
important. On the other hand, such critical applications expect
a minimum QoS for safety and reliability (e.g., inference time
and ML model accuracy). Therefore, they require continuous
monitoring of resources (e.g., energy budget) and workload

(e.g., number of detected pedestrians in time intervals), and
when needed, employing self-adaptive applications and adapt-
ing hardware and software configurations (e.g., camera reso-
lution, ML model, and hardware acceleration).

Figure 1 depicts a pedestrian detection scenario where an
application can employ different operation modes according to
pedestrian traffic volumes. For instance, this scenario could be
addressed with four operation modes as defined in Table I. A
self-adaptive application for this scenario can autonomously
balance resource (e.g., energy consumption) and application
requirements (e.g., frame processing speed and accuracy) by
switching among the different operation modes.

On the contrary, using a single operation mode for a whole
day cannot adapt to a changing environment. Considering a
smart-city scenario with hundreds of IoT cameras and dozens
of application instances deployed across several edge nodes,
the benefits of such an approach are exponential.

III. AN APPROACH TO DESIGN ENERGY-AWARE
SELF-ADAPTIVE APPLICATIONS

A self-adaptive application (SAA) is an application capable
of modifying itself or other connected resources in response to
a continuously changing operational environment [47], [48].

A SAA consists of a pair (AL,MR), where AL is the adap-
tation logic, and MR represents the managed resources [49],
which are a group of resources, such as robotics, vehicles,
and generic hardware with software, that the SAA can con-
trol [49]. The adaptation logic is composed by all those items
responsible for monitoring the environment (M), analyzing
the data (A), planning (P), and executing the adaptation (E).
This basic feedback framework proposed by Kephart and
Chess [50] is named MAPE loop, and it is often extended by
a knowledge component (K) responsible for managing content
(e.g., monitoring values and adaptation policies).

SAAs are particularly effective in resource-constrained en-
vironments. We consider here the case of an AI-based ap-
plication that implements the pedestrian detection use-case
described in Section II and that is hosted on an embedded
device (e.g., a Raspberry Pi) equipped with a video camera and
a hardware accelerator (e.g., a TPU). The device executes an
application capturing frames from the camera and processing
them with an object detection model to detect pedestrians.

The hardware accelerator boosts the processing speed by
lowering the ML model inference time. In this context, we
must consider three main objectives: achieving high detection
accuracy, processing frames at a high rate, and reducing energy
consumption.

Optimizing these objectives at the same time for every
possible operational condition is generally infeasible. In-
terestingly, a SAA can dynamically balance the degree of
satisfaction of these objectives depending on the run-time
context. However, engineers designing SAAs need to identify
suitable configurations for the run-time to balance the chosen
objectives. Further, SAAs have to implement the logic to
automatically switch between configurations (e.g., the four

operation modes reported in Table I), to adapt to changes in the
operational environment (e.g., the pedestrian traffic volumes).

Identifying the configurations that implement the intended
operation modes is also challenging, especially for AI-
based applications running on heterogeneous and resource-
constrained nodes. Indeed, simply using a simulator may lead
to results largely diverging from the real behavior of these
applications. On the other hand, taking empirical measures
by running the real devices and applications can be extremely
expensive, especially when large configuration spaces must be
explored [33]. We propose here an approach that combines the
benefits of the empirical identification of the configurations
and those of an intelligent exploration of the configuration
space to yield suitable solutions to design an effective and
energy-aware SAA.

Figure 2 describes our approach with a workflow diagram.
An engineer provides the adaptation logic (A) as a finite-state
machine (FSM) whose states represent the SAA operation
modes and whose transitions encode the switching conditions
between them. In parallel, the engineer identifies the config-
uration space to explore, and defines a Multi-Objectives Op-
timization Problem (MOOP) that can be solved automatically
(B) using a meta-heuristic search procedure. Furthermore, the
engineer specifies weights and thresholds for the objectives
to guide the (C) extraction of the configurations to set in
each operation mode. The workflow terminates (D) with the
implementation of the final FSM.

In the next subsections, we describe each step of the work-
flow in detail and exemplify the approach with the pedestrian
detection scenario described in Section II.

A. Defining the State-Based Adaptation Logic

The first step of our approach requires an engineer, sup-
ported by domain experts, to define, in a rigorous way, the
behavioral model of the self-adaptive application [51].

As specification we use a Finite-State Machine (FSM), since
it allows to explicitly represent the adaptation logic of an
SAA [52]–[54]: the states represent the operational modes of
the SAA, and the transitions represent the conditions triggering
a change in the operation mode of the application.

Formally, an FSM M is defined by a tuple (S,Σ, δ, s0),
where S is the set of states, Σ is the set of the input symbols,
that is, the set of events that may trigger state transitions, δ is
the set of all the possible transitions from a state s1 ∈ S to a
state s2 ∈ S caused by an event σ ∈ Σ, s0 is the initial state.

Let us consider the pedestrian detection scenario again. Here
an engineer may want to define a SAA that can self-adapt
across four operation modes (see Table I) to address the four
possible run-time contexts in the area where the camera shall
be deployed, defined for instance according to the available
studies [46], [55], [56]. Each operation mode, for example
low-energy, represents the working condition of the software
that is best suited for the corresponding run-time context, for
example few pedestrians detected. Each operation mode must
satisfy certain characteristics in terms of energy consumption,

TABLE I: A set of four operation modes used in our motivational pedestrian detection scenario.

Operation Mode Runtime Context Desirable Characteristics
Energy Consumption Detection Accuracy Frames Processing Rate

power-saving no pedestrians detected very low low moderate
low-energy few pedestrians detected low moderate moderate
high-accuracy small group of pedestrians detected moderate high high
high-rate crowd detected high moderate very high

DSolving the Multi-Objective
Optimisation Problem

Defining the State-Based
Adaptation Logic

Search
Space

Objectives
Set

Number of
Trials

State Machine

Pareto
Front

Extracting the Operation
Mode Configurations Configurations Implementing the Self-

Adaptive Application
Self-Adaptive
Application

B

A

C

This image has been designed using images from Flaticon.com

Fig. 2: The steps of the proposed approach represented as a workflow diagram.

high-
rate

power-
saving

low-
energy

high-
accuracy

crowd detected

few pedestrians detected

very few or no pedestrians detected

small group detected

crowd detected

few pedestrians detected few pedestrians detected

very few or no pedestrians detected

very few or no
pedestrians detected

Fig. 3: An abstract state machine modeling the states and the
transitions of a self-adaptive application for our scenario.

detection accuracy and frames processing rate. These charac-
teristics are used to identify the exact software configurations
at step (C) Extracting the Operation Mode Configurations by
providing the corresponding sets of objective weights and
thresholds. Figure 3 shows an abstract FSM, with the four
identified abstract states and 9 transitions that capture when
the software must self-adapt. Please note that the domain-
knowledge is exploited here to determine the transitions that
must be encoded in the FSM, among the full set of the possible
state transitions.

B. Solving the Multi-Objective Optimization Problem

Finding high-quality software configurations that corre-
spond to the operation modes identified by the engineer (e.g.,
the four states shows in Figure 3) is a hard problem. AI-
based applications can be configured according to several
parameters (see for instance the list of parameters that may
influence pedestrian detection listed in Table II), generating a
huge exploration space that cannot be exhaustively explored.
Computer-simulated experiments can reduce the time and
effort, but they are usually inaccurate, especially in Cyber

Physical Systems and other domains that include real-world
metrics [57]. To address this challenge, we defined a Multi-
Objective Optimization Problem (MOOP) that is able to dis-
cover the configurations that deliver the best results for the
considered set of objectives, and that can be exploited to
find the actual configurations that effectively implement the
operation modes represented as states of the FSM.

An optimization process aims to find a set of input values for
a problem to obtain the “optimal” output values. The definition
of optimality is problem-specific, and formally, it refers to
minimizing or maximizing one or more objective functions
by varying the input values. Hence, a MOOP requires the
satisfaction of a number of different and often conflicting
objectives at the same time [58], [59]. Intuitively, there is
no single best solution for all the objectives, but rather there
exist several optimal solutions representing the best trade-offs
among all the objectives [58]. The set of all possible solutions
constitutes the search space, which then also contains the set
of input values revealing optimal outputs.

We define the search space X as a set configurations. A
configuration conf is n-tuple (c1, . . . , cn), where ck is the
value of the k-th configurable parameter pk ∈ P assuming
values in its domain Dpk

. The size of X is |X| =
∏n

k=1 |Dpk
|.

The set of solutions X∗ is called the Pareto front, which
contains all the solutions where no improvement is possible
in any objective function without sacrificing at least one of the
other objective functions [59]. This is also referred to as the
non-dominated solutions set.

In the pedestrian detection scenario we have three objec-
tives: (i) maximize the pedestrians detection accuracy (acc),
(ii) minimize the energy consumption (eng), and (iii) maximize
the number of processed frames in a time window (rate).
Hence, we define a MOOP with these three objectives (de-
pending on the specific case, we might have a different number

of objectives):

min − acc(conf) ∧ eng(conf) ∧ −rate(conf)

s.t. conf ∈ X
(1)

The search space X is defined as a set of configuration quintu-
ples with five configuration parameters for our application, that
is, the camera resolution (R), the camera frame rate (FPS),
the object detection model (M), the detection threshold (T),
and whether to use the external hardware accelerator (TPU).
Each parameter domain has a different cardinality (see details
in Table II). Accordingly, |X| = |R| × |FPS | × |M | × |T | ×
|TPU | = 3402 configuration quintuples.

Solving the Eq. 1 results in a Pareto front with non-
dominated solutions, that is, configurations that fulfill the three
objectives by a different, but relevant, degree. We use a strategy
derived from NSGA-II to compute the Pareto front.

NSGA-II is a solid, fast, and widely used optimization
algorithm in real-world applications [60]. We use the approach
defined by Deb et al. [61] for the exploration of the search
space: it is explored by searching for dominant solutions (i.e.,
the fitness of a solution is defined by computing its non-
domination level) in less populated areas of the space (i.e.,
determined by computing the crowding distance) guaranteeing
the diversity of the identified solutions; mutations randomly
change parameter values with a probability that is computed
according to the number of parameters in the configuration,
and uniform crossover recombines configurations with a prob-
ability of 0.9.

During the search space exploration, our procedure records
all the evaluated objective values, and at the end it extracts
the Pareto front from the whole results set. In the empirical
evaluation, we show how this strategy can be used to explore
only 10% of the search space to select nearly optimal con-
figurations. Note this is particularly relevant, since assessing
how a single configuration fulfills the three objectives requires
collecting empirical measures by repeating a same experiment
multiple times.

C. Extracting the Operation Mode Configurations

The Pareto front obtained by solving the MOOP usually
contains a large number of non-dominated solutions, compared
to the operation modes needed by the self-adaptive application.
The decision-making process to identify the actual solutions
from the Pareto front involves comparing multiple criteria,
trading-off certain objectives for others [62], [63]. To address
this problem, we use the weighted gray relational analysis
(WGRA) [62] method, a weighted version of the GRA intro-
duced by Ju-Long [64] and employed in multiple application
domains [65]. This is a very robust method [66], preferable
to other multi-criteria decision making (MCDM) methods as
it inherently incorporates uncertainty in data, and it is simple
to calculate [66], [67] and to integrate into existing software.

GRA combines into a single value all the objectives. This
simplifies the original MCDM problem into a single-criterion
decision-making problem [62], making Pareto front solutions
easily comparable. To let engineers extract states that fulfill

the objectives by different degrees, we employ the weighted
version of the algorithm that uses a set of weights W to give
more importance to certain objectives [65].

The WGRA algorithm consists of three main steps: (i) data
normalization, (ii) reference network computation, and (iii)
gray relational grade (GRG) computation [63].

The data normalization step consists of the normalization of
the objective values in the Pareto front according to two cases:
larger-the-better for maximization, and smaller-the-better for
minimization. The normalized value Fij is calculated by Eq. 2
and 3 for maximization and minimization cases, respectively:

Fij =
fij − mini∈nfij

maxi∈nfij − mini∈nfij
(2)

Fij =
maxi∈nfij − fij

maxi∈nfij − mini∈nfij
(3)

with fij as the i-th value of the j-th objective in the matrix
O, a matrix n×m composed of n Pareto front solutions and
m objectives. Fij is the value of fij after normalization.

The reference network computation step consists in forming
the reference network F+

j , that is, an ideal network obtained
by choosing the best value of each of the objectives as follows:

F+
j = maxi∈nFij (4)

Finally, the gray relational grade (GRG) computation step
consists in calculating the similarity between each candidate
network (i.e., the objective values of each optimal solution in
the Pareto front) and the reference network F+

j . The GRG for
each i-th value in the Pareto Front is computed as follows:

GRGi =
1

n

m∑
j=1

wj
∆min −∆max
∆ij +∆max

(5)

where wj is the weight of the j-th objective value (with∑m
j=1 wj = 1); ∆ij = |F+

j − Fij | is the absolute value
of the difference of between the j-th objective value in the
reference network and the one in the candidate network;
∆max = maxi∈n,j∈m(∆ij) and ∆min = mini∈n,j∈m(∆ij)
are the maximum and minimum deltas, respectively.

The conf ∈ X with the largest GRGi is the recommended
optimal solution outputed by the WGRA process. Depending
on the set of weights used to extract the configuration from the
Pareto front, the configuration shall map to a different state of
the FSM, that is, it implements a different operation mode of
the AI-based edge service.

To illustrate further, let us focus on two operation modes
in our example, namely, power-saving and high-rate. The
engineer, jointly with domain experts [68], may provide the
following sets of weights for the two operation modes, re-
spectively: Wpower-saving = {0.05, 0.9, 0.05} and Whigh-rate =
{0.6, 0, 0.4}. The specific weights could be derived from a
Service Level Agreement (SLA) defining the QoS, and the
costs the application service provider to sustain and deliver
the application.

Engineers could also define a set of objective thresholds tj
for each objectives Oj to reduce the size of the Pareto front

TABLE II: The domain of the parameters used to define the search space of the multi-objective optimization problem.

Parameter Parameter Type Domain

Camera Resolution (R) Categorical {1920x1080, 1280x720, 640x480}

Camera Frame Rate (FPS) Categorical {1, 5, 10, 15, 20, 25, 30}

Object Detection Model (M) Categorical
{SSD MobileNet V1, SSD/FPN MobileNet V1 TF2, SSD MobileNet V2,
SSD MobileNet V2 TF2, SSDLite MobileDet, EfficientDet-Lite0,
EfficientDet-Lite1, EfficientDet-Lite2, EfficientDet-Lite3}

Detection Threshold (T) Numerical (low: 0.1, high: 0.9, step: 0.1) {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}

Use HW Accelerator (TPU) Categorical {true, false}

given in input to the WGRA algorithm, filtering out solutions
that might be unreasonable for a given operation mode op. In
particular, a solution is filtered from the Pareto front if the
value it achieved on objective Oj is above the threshold tj .

For example, let us consider the power-saving and the
high-rate operation modes again. The weights assigned to the
Wpower-saving set must give a large importance to the energy
consumption objective in order to extract an energy-efficient
configuration. However, this may lead to the identification of a
very poor but still non-dominated solution for the other two ob-
jectives. To prevent this risk, the engineer can filter all the solu-
tions that do not provide a minimum detection accuracy level
and/or number of processed frames. For instance, they can
define a set of thresholds Tpower-saving = {tacc, teng, trate} =
{0.2, 0, 60} to exclude solutions with a detection accuracy
lower than 0.2, and a number of processed frames lower than
60. A completely different set of thresholds could be defined
for the high-rate, that is, Thigh-rate = {0.3, 0, 0}. In this case,
solutions with a detection accuracy lower than 0.3 are filtered
out in order to provide a minimum detection accuracy level,
when compared to the power-saving mode.

high-
rate

power-
saving

low-
energy

high-
accuracy

crowd detected

few pedestrians detected

very few or no pedestrians detected

small group detected

crowd detected

few pedestrians detected few pedestrians detected

very few or no pedestrians detected

very few or no
pedestrians detected

wacc: 0.6
weng: 0.4
wrate: 0

tacc: 0.3
teng: 0
trate: 60

wacc: 0.6
weng: 0
wrate: 0.4

tacc: 0.3
teng: 0
trate: 0

wacc: 0.05
weng: 0.9
wrate: 0.05
tacc: 0.2
teng: 0
trate: 60

wacc: 0.9
weng: 0.05
wrate: 0.05
tacc: 0
teng: 0
trate: 120

Fig. 4: A refined version of the abstract state machine shown
in Figure 3 with the set of weights and thresholds for each of
the operation modes.

Figure 4 shows the refined version of the abstract FSM
previously shown in Figure 3 with the weights and thresholds
for WGRA analysis defined by the engineers attached to
states. The chosen weights and thresholds represent the actual
specification of the desirable characteristics of the operation
modes listed in Table I. The execution of the WGRA algorithm
for each of the FSM state extracts a configuration conf op with
the actual configuration parameter values that can be used by

the SAA application to self-adapt the operation mode.

D. Implementing the Self-Adaptive Application

In the last step, the engineer is required to implement the
self-adaptive application according to the output of the analy-
sis. The abstract state machine is transformed into a concrete
one in two steps: first, each of the transitions must be turned
into an actual triggering condition; second, the operation mode
configurations extracted in the previous step are mapped into a
piece of logic able to set these configurations at runtime. Fig. 5
shows the final FSM for our pedestrian detection scenario, with
actual conditions and operation modes.

high-
rate

power-
saving

low-
energy

high-
accuracy

pedestrians >= 5

pedestrians > 1

pedestrians <= 1 in the last 5 mins

2 < pedestrians <= 4

pedestrians >= 5

pedestrians < 2pedestrians < 4

pedestrians <= 1 in the last 5 mins

pedestrians <= 1 in
the last 5 mins

• R: 1280x720
• FPS: 1
•M: EfficientDet-Lite3
• T: 0.1
• TPU: false

• R: 1280x720
• FPS: 25
•M: EfficientDet-Lite3
• T: 0.1
• TPU: true

• R: 640x480
• FPS: 1
•M: SSD MobileNet V2
• T: 0.3
• TPU: false

• R: 1920x1080
• FPS: 15
•M: EfficientDet-Lite2
• T: 0.1
• TPU: false

Fig. 5: The concrete finite state machine implementing a self-
adaptive application for our scenario.

The FSM can be translated into working code using gen-
erators [69], [70] or when this is not possible or too dif-
ficult [71], the SAA can be obtained semi-automatically or
manually [71]–[73]. Our approach outputs a concrete FSM
encoding the SAA and does not bind the engineer to use any
specific method to implement the SAA.

IV. EMPIRICAL EVALUATION

To evaluate our approach, we investigate the following two
research questions in the context of the pedestrian detection
case study described in Section II. We select such a case study
since it represents a real-world and challenging scenario that
requires delivering effective and sustainable AI edge services.
RQ1 (Meta-Heuristic VS Near-Exhaustive Search) - Can
our meta-heuristic search approach discover solutions
whose quality is comparable to those obtained by a near-
exhaustive search? This research question investigates the
effectiveness of our meta-heuristic strategy. In particular, it
studies whether the heuristic exploration of a small portion
of the search space can lead to results comparable to a near-
exhaustive exploration.

RQ2 (Objectives Trade-Off) - Can a self-adaptive pedestri-
ans detection application better balance energy consump-
tion and application objectives compared to a non-adaptive
application? This research question investigates whether the
self-adaptive application resulting from our methodology can
release a better trade-off among accuracy, energy, and process-
ing speed compared to four baseline non-adaptive applications.

A. Experimental Setting

Latch Bistable
Relay

Coral USB
Accelerator

Raspberry Pi
Camera Module v2

Raspberry Pi 4
Model B Rev 1.1

USB 3.0 Extension Cable

Digital Power Meter

Digital Power Meter Raspberry Pi
Camera Module v2

Raspberry Pi 4
Model B Rev 1.1

Coral USB Accelerator

Latch Bistable Relay

USB 3.0 Extension Cable

GPIO Interface

GPIO Interface

This image has been designed using images from Flaticon.com

Fig. 6: The test-bed used to run the evaluation experiments.

Fig. 6 shows the test-bed we used to run our case study
evaluation, first schematically (above), then its concrete in-lab
implementation (below).

We employ a Raspberry Pi (RPi) 4 Model B Rev 1.1 (64-bit
quad-core ARMv8, 4GB of RAM, RPi OS Lite 64-bit Debian
GNU/Linux 11) equipped with the RPi Camera Module v2
and boxed in a LABISTS case1 with a 5V fan connected to
the RPi General Purpose Input/Output (GPIO) interface. The
RPi is powered by a USB-C AC adapter connected through
a GW Instek GPM-8213 digital power meter2 that we use to
collect instant power values.

To reduce the idle energy consumption of RPi, we disable
the unnecessary components: all the LEDs (i.e., activity,
power, and Ethernet port), the Wi-Fi antenna, the Bluetooth,
and the HDMI port. Internet and private network connectivity
is provided via network cable. A Coral USB Accelerator (Edge
TPU)3 is plugged-in for those experiments that require hard-
ware accelerator. The accelerator is automatically powered-on
when connected to the USB port.

Since there is no possibility to enable and disable a single
USB port on-the-fly via software, a self-adaptive application
running on such device would not be capable to completely
power-off the accelerator when not in use, reducing the po-
tential benefits of switching to an energy-efficient operation
mode. To overcome this limitation, we realize a software-level
power switch by employing a latch bi-stable relay (SONGLE
SRD-05VC-SL-C) connected to the GPIO interface and a USB
3.0 extension cable. This enables us to turn it on and off

1https://labists.com/products/raspberry-pi-4-case-kit
2https://www.gwinstek.com/en-GB/products/detail/GPM-8213
3https://coral.ai/products/accelerator

by triggering the relay through software to close or open
the circuit using a GPIO pin. For pedestrian detection, we
employ state-of-art object detection models pre-trained on
the COCO dataset [74]. The models are publicly available
at the Coral.ai website4, and they are already compiled for
both CPU and Edge TPU execution. We reported detailed
information to re-create our test-bed on our public reposi-
tory https://gitlab.com/sustainable-continuum-monitoring/self-
adaptive-moop/-/tree/ASE 2023?ref type=tags.

B. RQ1 - Meta-Heuristic VS Near-Exhaustive Search

This research question aims to investigate whether exploring
a small portion of the search space efficiently can lead to
comparable results with a near-exhaustive exploration.

To answer RQ1, we first compute the Pareto front of the
MOOP as defined in Eq. 1 with our meta-heuristic search
procedure by only exploring 10% of the search space reported
in Table II (i.e., 340 unique trials out of 3402 trials), and then
we explore more than 80% of the same space (i.e., 2790 unique
trials out of 3402 trials) with a random search procedure.
Second, we extract the four operation modes needed to address
the pedestrian detection scenario (according to the weights and
thresholds reported in Fig. 4) from the two Pareto fronts: the
one computed with the meta-heuristic search procedure and
the one obtained with the near-exhaustive procedure. Finally,
we compare the objective values achieved with the two SAAs
that derive from the two sets of selected states. A good meta-
heuristic procedure should be able to achieve results as good
as the near-exhaustive exploration.

The whole optimization procedure is implemented with
the Optuna framework [75], a state-of-art hyperparameter
optimization framework with MOOP capabilities. Our meta-
heuristic search procedure with memory capabilities is realized
by using the NSGAIISampler5 implementing the NSGA-II
algorithm and the results database provided by Optuna. We
use the default framework values to configure the sampler
and we repeat the search 10 times with a different seed
value recorded for reproducibility. The near-exhaustive search
procedure, instead, employs the RandomSampler6.

At each optimization round, when a sampler selects a point
conf from the search space, two experiments must be executed
to determine the objective values for the selected conf .

The first experiment computes the detection accuracy by
employing a pedestrian street scene belonging to the Multi-
ple Object Tracking benchmark dataset [76] (i.e., the ADL-
Rundle-6 video). Both the frame size and the ground truth
have been properly adjusted to match the camera resolution
(R) parameter values defined by the search space. We use the
Mean Average Precision (mAP) as detection accuracy metric,
a popular metric for object detection algorithms [77], and

4https://coral.ai/models/object-detection/
5https://optuna.readthedocs.io/en/stable/reference/samplers/generated/

optuna.samplers.NSGAIISampler.html
6https://optuna.readthedocs.io/en/stable/reference/samplers/generated/

optuna.samplers.RandomSampler.html

https://labists.com/products/raspberry-pi-4-case-kit
https://www.gwinstek.com/en-GB/products/detail/GPM-8213
https://coral.ai/products/accelerator
https://gitlab.com/sustainable-continuum-monitoring/self-adaptive-moop/-/tree/ASE_2023?ref_type=tags
https://gitlab.com/sustainable-continuum-monitoring/self-adaptive-moop/-/tree/ASE_2023?ref_type=tags
https://coral.ai/models/object-detection/
https://optuna.readthedocs.io/en/stable/reference/samplers/generated/optuna.samplers.NSGAIISampler.html
https://optuna.readthedocs.io/en/stable/reference/samplers/generated/optuna.samplers.NSGAIISampler.html
https://optuna.readthedocs.io/en/stable/reference/samplers/generated/optuna.samplers.RandomSampler.html
https://optuna.readthedocs.io/en/stable/reference/samplers/generated/optuna.samplers.RandomSampler.html

Detection
Accuracy (mAP)

Frames
Processing Rate
(FPR)

Energy
Consumption

(Wh)

0.2
0.4
0.6
0.8

0.2
0.4

0.6
0.8

3.8
3.6

3.4
3.2

near-exhaustive meta-heuristic

(a) power-saving

Detection
Accuracy (mAP)

Frames
Processing Rate
(FPR)

Energy
Consumption

(Wh)

0.2
0.4
0.6
0.8

0.2
0.4

0.6
0.8

4.8
4.6

4.4
4.2

near-exhaustive meta-heuristic

(b) low-energy

Detection
Accuracy (mAP)

Frames
Processing Rate
(FPR)

Energy
Consumption

(Wh)

0.2
0.4
0.6
0.8

1.2
1.4

1.6
1.8

4.8
4.6

4.4
4.2

near-exhaustive meta-heuristic

(c) high-accuracy

Detection
Accuracy (mAP)

Frames
Processing Rate
(FPR)

Energy
Consumption

(Wh)

0.2
0.4
0.6
0.8

3.2
3.4

3.6
3.8

6.8
6.6

6.4
6.2

near-exhaustive meta-heuristic

(d) high-rate

Fig. 7: Radar charts comparing the objective values of the four self-adaptive operation modes when employing a solution
obtained with the meta-heuristic search procedure and one obtained with the near-exhaustive search procedure. The solutions
are extracted with the WGRA method using the same set of weights and thresholds.

we evaluate the model predictions by using the open-source
FiftyOne COCO-style evaluator7.

The second experiment, instead, computes both the achieved
Frames Processing Rate (FPR) and the energy consumption.
We run the pedestrian detection application on the device (i.e.,
the Raspberry Pi described in Section IV-A for 120 seconds
configured according to conf). We collect both the consumed
energy in Watt-hours (Wh) and the FPR computed as the ratio
between the number of processed frames and the experiment
duration.

Results: The near-exhaustive search executed for about
18 days sampling 2790 unique trials and discovered a Pareto
front with 131 solutions. The meta-heuristic search executed
for about 54 hours sampling 340 unique trials (10% of the
entire space) and discovered a Pareto front with 83 solutions
on average. Note that the saving, when the sampling involves
running experiments, is significant in both relative and absolute
terms (more than 2 weeks of computing saved).

Since each run of the meta-heuristic search may return a
slightly different configuration for a given state, we selected
the configuration that occurred most frequently in the 10
repetitions to derive the corresponding SAA. When multiple
solutions have the same highest frequency, we excluded the
solution matching the one extracted from the near-exhaustive
Pareto front to avoid any bias, and consider a worst case
scenario.

Fig. 7 shows four radar charts - one per each operation
mode in the SAA - comparing the three objective values of
the solution extracted with the near-exhaustive search (green,
dashed, dot mark), and the one extracted from meta-heuristic
search (purple, solid line, triangle mark), respectively. Each of
the axes has its own scale, but for all the objectives, the higher
is the value the better it is.

The plots clearly indicate that the states identified by our
meta-heuristic search procedure and the ones obtained with the
near-exhaustive search result in highly similar performance.
The low-energy operation mode (Fig. 7b) resulted in exactly
the same solution returned by the two procedures. While the
near-exhaustive search identified solutions performing compa-

7https://docs.voxel51.com/user guide/evaluation.html

rably to the ones identified by the meta-heuristic search in the
remaining three operation modes.

In the case of the power-saving operation mode (Fig. 7a),
the two solutions perform with the same FPR and with
negligible difference in energy consumption (< 1%). The
difference is slightly larger for the detection accuracy (0.307
mAP VS 0.215 mAP), whose relevance in the power-saving
mode is however limited.

In the case of the high-accuracy operation mode (Fig. 7c),
the two solutions perform with the same detection accuracy,
and with negligible differences for FPR(< 1%) and energy
consumption (4.442 Wh VS 4.570 Wh).

Finally, the two solutions obtained for high-rate (Fig. 7d)
perform with the same detection accuracy, and with negligible
differences for both FPR and the energy consumption (< 2%).

We can conclude that our search procedure has been as
effective as the near exhaustive procedure for the pedestrian
detection scenario, despite an empirical exploration of only
10% of the search space.

C. RQ2 - Objectives Trade-Off

This research question aims to investigate whether a self-
adaptive application changing its operation mode can better
balance the fulfillment of multiple objectives compared to a
non-adaptive application using a single operation mode.

We study this research question in the context of two
pedestrian traffic scenarios, namely, weekdays and weekends,
derived from real-world traffic shapes reported by Dobler et
al. [46] in their work about urban pedestrians dynamic in the
borough of Manhattan. In particular, the weekdays scenario
has a 3-peaks structure aligned with the “9-to-5” workday
time, in which the peaks correspond to commuting to work,
exiting buildings at lunch time, and leaving the work place.
The weekend scenario does not show a peaked structure, but
rather a steady increase of pedestrians until the night.

We create a scenario by selecting 1440 frames, that is, 60
frames per hour, from a pool 115 of manually annotated frames
containing between 0 and 5 pedestrians. Each hour of the day
is labeled as 0 pedestrians, 1 to 3 pedestrians, and 4 to 5
pedestrians. The frames used for the experiment are taken from
a study about real-time analytics for traffic safety [9].

https://docs.voxel51.com/user_guide/evaluation.html

We implement a self-adaptive pedestrian detection applica-
tion according to the FSM depicted in Fig. 5 using the Python
State Machine library (https://pysm.readthedocs.io/). Then, we
use the same pedestrian detection logic to obtain the non-
adaptive baseline application. The four operation mode con-
figurations obtained by the meta-heuristic search procedure in
RQ1 are used to configure both the self-adaptive application
and the non-adaptive baselines, obtaining four non-adaptive
applications. Fig. 5 shows the configuration parameter values.
Further, we include in the study a non-adaptive configu-
ration, namely the balanced configuration, that assigns the
same weight (0.33) to the three objectives and uses the
thresholds (tacc = 0.3, teng = 0, trate = 120) that filter
out the same unsatisfactory configurations collectively filtered
out by the four operation modes of the adaptive approach.
This configuration implements the best attempt to balance all
the objectives without introducing any self-adaptation logic.
Interestingly, the balanced configuration matches our high-
accuracy configuration, that is, high-accuracy can be released
maintaining a good level of energy consumption and frame
rate.

We evaluate the resulting self-adaptive and non-adaptive
applications by using the same set of metrics used for RQ1,
that is, the MOOP objectives: detection accuracy (mAP),
energy consumption (Wh), and FPR.

Detection
Accuracy (mAP)

Frames
Processing Rate
(FPR)

Energy
Consumption

(Wh)

0.2
0.4
0.6
0.8

0.8
1.6

2.4
3.2

6.2
5.4

4.6
3.8

high-accuracy/balanced
high-rate
low-energy
power-saving
self-adaptive

(a) Weekdays Scenario
Detection

Accuracy (mAP)

Frames
Processing Rate
(FPR)

Energy
Consumption

(Wh)

0.2
0.4
0.6
0.8

0.8
1.6

2.4
3.2

6.2
5.4

4.6
3.8

high-accuracy/balanced
high-rate
low-energy
power-saving
self-adaptive

(b) Weekends Scenario

Fig. 8: Radar charts comparing the SAA and the 4 non-
adaptive applications in the weekdays and weekends scenarios.

Results: Fig. 8 compares the performance of the SAA
(purple, solid line) with the four non-adaptive applications
(black/red/green/cyan, dotted lines) in both the weekdays
(Fig. 8a) and weekends (Fig. 8b) scenarios. As for the radar
charts in Fig. 7, the higher the better.

The shape of the triangle in both the radar charts visually
shows how the adaptive behavior guarantees the achievement
of a better trade-off among the three objectives compared to

the non-adaptive behavior. It outperforms three out of four
non-adaptive applications regarding both energy consumption
(i.e., low-energy, high-accuracy/balanced, high-rate) and FPR
(i.e., power-saving, low-energy, high-accuracy/balanced), and
one out of four w.r.t. the detection accuracy (i.e., power-
saving). Notably, it is still able to guarantee a similar accuracy
when compared to the other three non-adaptive applications
(i.e., low-energy, high-accuracy/balanced, high-rate).

In particular, compared to the best/worst non-adaptive op-
eration mode, the SAA is able to save between 0.5% and
61% of energy in the weekdays scenario, and between 13%
and 81% in the weekends scenario. The improvement on the
FPR is between 96% and 233% in the weekdays scenario,
and between 77% and 196% in the weekends scenario. The
accuracy loss is between 2% and 4% in the weekdays scenario,
and between 5% and 6% in the weekends scenario, but the
SAA outperforms the power-saving application with a gain in
the accuracy between 62% and 189%.

The SAA performed slightly differently in the two sce-
narios. In fact, the presence of a 3-peaks structure with a
higher number of pedestrians in the weekdays scenario makes
the self-adaptive application to use more accurate and faster
operation modes (i.e., high-accuracy and high-rate) for a
larger amount of time, resulting in a higher FPR at the cost
of a higher energy consumption. On the other hand, the traffic
shape of the weekends scenario fosters the usage of energy
efficient operation modes (i.e., power-saving and low-energy),
resulting in a lower energy consumption and slower processing
speed. This shows how the SAA application can employ
more accurate operation modes when the pedestrians workload
is higher, using less accurate operation modes (i.e., power-
saving) when the pedestrians workload is less demanding.

This behavior is also confirmed by the energy consumption
box plots shown in Fig. 9a and Fig. 9b. The two figures show
the energy consumption of the self-adaptive application and
the four non-adaptive applications in different time windows
of the day for both the scenarios. The vertical orange line in
the boxes indicates the median value.

We can observe how the self-adaptive application cap-
tures correctly the 3-peaks structure in the weekdays scenario
(Fig. 9a) and uses the high-rate in these three time windows.
At the same time, it employs energy efficient operation modes
(i.e., power-saving and low-energy) when the pedestrians
traffic is less intense (e.g., 00:00 - 05:00 and 21:00 - 00:00). A
similar behavior is obtained in the weekends scenario shown in
Fig. 9b. In a nutshell, the self-adaptive solution is consuming
energy only when it is worth doing it.

In summary, the empirical evaluation shows how the pro-
posed self-adaptive approach is capable of adapting to a
changing environment while balancing multiple application
requirements and energy consumption, behaving as optimally
as the configurations selected with a near-exhaustive ex-
ploration of the parameters space. The experimental ma-
terial to fully reproduce our study, including instructions
to recreate our test-bed based on Raspberry Pi, is avail-

https://pysm.readthedocs.io/

4 6

high-accuracy
balanced

power-saving

high-rate

low-energy

self-adaptive

high-accuracy
balanced

power-saving

high-rate

low-energy

self-adaptive

high-accuracy
balanced

power-saving

high-rate

low-energy

self-adaptive

high-accuracy
balanced

power-saving

high-rate

low-energy

self-adaptive

high-accuracy
balanced

power-saving

high-rate

low-energy

self-adaptive

high-accuracy
balanced

power-saving

high-rate

low-energy

self-adaptive

high-accuracy
balanced

power-saving

high-rate

low-energy

self-adaptive

high-accuracy
balanced

power-saving

high-rate

low-energy

self-adaptive

high-accuracy
balanced

power-saving

high-rate

low-energy

self-adaptive

high-accuracy
balanced

power-saving

high-rate

low-energy

self-adaptive

00:00 - 05:00
0 pedestrians

4 6

05:00 - 09:00
1-3 pedestrians

4 6

09:00 - 10:00
4-5 pedestrians

4 6

10:00 - 12:00
1-3 pedestrians

4 6
Energy Consumption (Wh)

12:00 - 13:00
4-5 pedestrians

4 6

13:00 - 17:00
1-3 pedestrians

4 6

17:00 - 18:00
4-5 pedestrians

4 6

18:00 - 21:00
1-3 pedestrians

4 6

21:00 - 00:00
0 pedestrians

4 6

Whole Day

(a) Weekdays Scenario

3 4 5 6 7

high-accuracy
balanced

power-saving

high-rate

low-energy

self-adaptive

high-accuracy
balanced

power-saving

high-rate

low-energy

self-adaptive

high-accuracy
balanced

power-saving

high-rate

low-energy

self-adaptive

high-accuracy
balanced

power-saving

high-rate

low-energy

self-adaptive

high-accuracy
balanced

power-saving

high-rate

low-energy

self-adaptive

high-accuracy
balanced

power-saving

high-rate

low-energy

self-adaptive

00:00 - 09:00
0 pedestrians

3 4 5 6 7

09:00 - 14:00
1-3 pedestrians

3 4 5 6 7
Energy Consumption (Wh)

14:00 - 18:00
4-5 pedestrians

3 4 5 6 7

18:00 - 21:00
1-3 pedestrians

3 4 5 6 7

21:00 - 00:00
0 pedestrians

3 4 5 6 7

Whole Day

(b) Weekends Scenario

Fig. 9: Box-plots comparing energy consumption for the self-adaptive and the four non-adaptive applications.

able at https://gitlab.com/sustainable-continuum-monitoring/
self-adaptive-moop/-/tree/ASE 2023?ref type=tags.

D. Threats to Validity

First, the design of the FSM requires the definition of a set
of operations modes characterized by weights and thresholds,
and the definition of state transition conditions. This is a
manual and non-trivial operation guided by domain-expert
knowledge that can limit the feasibility of the approach and
lead to different results. Nevertheless, the reported results show
how a SAA can largely outperform non-adaptive baselines,
regardless of the specific configuration used. Second, the
design of the pedestrian traffic shapes may have an impact
on the results. To mitigate this threat, we referred to real
scenarios to achieve realistic and informative results. Finally,
the results may not generalize to other application domains.
Indeed, we proposed a case study evaluation focusing on AI-
services for pedestrian detection running at the edge, and the
design of a SAA addressing a different problem may produce
different results. Although the methodology and the approach
are general, we cannot claim the results shall straightforwardly
generalize to other contexts. The illustrated case study never-
theless provides evidence that the proposed approach can gen-
erate useful results in non-trivial domains such as pedestrian
detection, which requires to balance high-speed computations
(e.g., video-processing) with energy saving requirements.

V. RELATED WORK

In the context of IoT architectures and edge oriented sys-
tems, self adaptation and optimization technologies have been
used to address a range of aspects. For instance, adaptation
capabilities have been engineered to achieve auto-scaling and
task offloading [78], introducing flexibility in the computation
at the cost of some jitter in the quality of service and, often,
not optimized energy consumption shifts among the nodes [5].

Multiple approaches have been defined to modify the be-
havior of the components at the edge. The most common
examples of self-adaptive edge components are those related
to Adaptive Sampling. Adaptive sampling refers to the idea
of dynamically modifying the sampling rate of sensors and
software monitoring probes as well as the inference rate
of the components that process such data, according to the
context [79]–[82]. Collecting and transmitting less data can
save energy and computational resources [83].

Similarly, Adaptive Filtering focuses on reducing the num-
ber of samples transmitted. For example, if a sensor value is
considered similar to a previously collected value or evolves
in a predicable way, a node can avoid the transmission of
such information to save the transmission cost. Since filtering
usually results in sub-optimal performance, the filters must
adapt at run-time to guarantee a consistent behavior [79].

Adaptive Compression has been also extensively exploited
at the edge. Adaptive Compression solutions aim at reducing
the data traffic in the network by reducing the size of the data
packets with minimal loss, for instance using strategies that
consider the importance of the processed data [84]. Different
compression algorithms may also be used dynamically based
on the shape of the data, enabling higher compression without
inducing significant losses in the accuracy of the data [85].

The approach presented in this paper is complementary to
all these forms of adaptation. In fact it provides a methodology
to design a SAA running at the edge that is able to adapt
its operation mode according to the context. The configura-
tions that correspond to the operation modes are determined
empirically, according to the key application objectives that
must be optimized. Further optimizing sampling, filtering and
compression strategies are additional capabilities.

Self-adaptive behaviors to improve energy consumption
have been also studied at the architectural level [5]. For
instance, a number of approaches have been proposed to

https://gitlab.com/sustainable-continuum-monitoring/self-adaptive-moop/-/tree/ASE_2023?ref_type=tags
https://gitlab.com/sustainable-continuum-monitoring/self-adaptive-moop/-/tree/ASE_2023?ref_type=tags

target specific aspects of energy-awareness such as memory
handling [86], networking [87], storage [26], and scheduling
and provisioning [20]. Furthermore, the ever growing interest
in machine learning based solutions lead to specific optimized
models for the edge [27]. These solutions can address specific
dimensions but lack both the state-based adaptation capabili-
ties introduced in this paper, and the definition of a practical
empirical procedure to determine the concrete configurations
that must be used by the SAA. Conversely, Da Silva et
al. [88] proposed a framework for the automatic generation
of application processes. Such processes represent the goals
and capabilities of the application in the form of application
workflows. This level of adaptation is not usually suitable for
edge applications, since the run-time generation of the appli-
cation processes requires extensive computational capabilities
and introduces significant computational overhead [89], which
may not be available at edge.

Mobile applications is another domain of self-adaptation
where energy consumption is pivotal [90]. While adapta-
tion mechanisms designed for mobile applications are not
directly comparable to applications running on the Edge, they
share some key aspects, such as the presence of a resource-
constrained and battery-powered devices. For instance, Ardito
et al. [91], [92] proposed an architectural paradigm in which
the operating system or the middleware is able to offer energy-
related information to running applications. This enables
the implementation of energy-aware self-adaptation strategies
based on energy levels. Our proposal is orthogonal with
respect to this approach, as we investigate how to design and
deploy such applications, with specific focus on those that are
AI-based, but without assuming run-time information about
the available energy.

VI. CONCLUSIONS

We presented an approach that can guide developers in the
implementation of AI-based self-adaptive applications able of
switching their operation modes in response to changes in
the environment. The configuration of the operation modes
are determined empirically, based on a meta-heuristic search
procedure that can identify useful configurations by sampling
a small portion of the configuration space. Experimental
results show how the proposed approach can outperform non-
adaptive baseline configurations, behaving as optimally as
configurations selected with a nearly exhaustive exploration
of the configuration space, in a pedestrian detection scenario.

Future work concerns with automating the FSM design and
synthesis through data-driven methods, and extending the self-
adaptive capabilities by considering clusters of instances that
can adapt simultaneously. We also plan to study our approach
in a more complex setup involving battery-powered devices
and photovoltaic panels, considering run-time energy-related
metrics and deploying our prototype in the field.

ACKNOWLEDGMENTS

This work has been partially supported by the MUR under
the grant “Dipartimenti di Eccellenza 2023-2027”, Engineered

MachinE Learning-intensive IoT systems (EMELIOT) national
research project which has been funded by the MUR under
the PRIN 2020 program (Contract 2020W3A5FY), Runtime
Control in Multi Clouds (RUCON), Austrian Science Fund
(FWF): Y904-N31 START-Programm, 2015, Sustainable Wa-
tershed Management Through IoT-Driven Artificial Intelli-
gence (SWAIN), CHIST-ERA-19-CES-005, Austrian Science
Fund (FWF), 2021, Standalone Project Transprecise Edge
Computing (Triton), Austrian Science Fund (FWF): P 36870-
N, 2023, Flagship Project High-Performance Integrated Quan-
tum Computing (HPQC) # 897481 Austrian Research Promo-
tion Agency (FFG), 2023, and by the 5G Use Case Challenge
InTraSafEd 5G (Increasing Traffic Safety with Edge and 5G)
funded by the City of Vienna.

REFERENCES

[1] IEA, “Data centres and data transmission networks,” IEA, Tech. Rep.,
2022.

[2] U. P. POST, “Energy consumption of ICT,” UK Parliament, Tech. Rep.,
2022.

[3] S. Lange, J. Pohl, and T. Santarius, “Digitalization and energy consump-
tion. does ICT reduce energy demand?” Ecological Economics, vol. 176,
p. 106760, 2020.

[4] A. Fonseca, R. Kazman, and P. Lago, “A manifesto for energy-aware
software,” IEEE Software, vol. 36, no. 6, pp. 79–82, 2019.

[5] C. Jiang, T. Fan, H. Gao, W. Shi, L. Liu, C. Cérin, and J. Wan, “Energy
aware edge computing: A survey,” Computer Communications, vol. 151,
pp. 556–580, 2020.

[6] G. Callebaut, G. Leenders, J. Van Mulders, G. Ottoy, L. De Strycker, and
L. Van der Perre, “The art of designing remote iot devices—technologies
and strategies for a long battery life,” Sensors, vol. 21, no. 3, p. 913,
2021.

[7] H. Elahi, K. Munir, M. Eugeni, S. Atek, and P. Gaudenzi, “Energy
harvesting towards self-powered iot devices,” Energies, vol. 13, no. 21,
p. 5528, 2020.

[8] V. Pecunia, L. G. Occhipinti, and R. L. Hoye, “Emerging indoor
photovoltaic technologies for sustainable internet of things,” Advanced
Energy Materials, vol. 11, no. 29, p. 2100698, 2021.

[9] I. Lujic, V. De Maio, K. Pollhammer, I. Bodrozic, J. Lasic, and
I. Brandic, “Increasing traffic safety with real-time edge analytics and
5g,” in Proceedings of the 4th International Workshop on Edge Systems,
Analytics and Networking, 2021, pp. 19–24.

[10] T. S. Combs, L. S. Sandt, M. P. Clamann, and N. C. McDonald,
“Automated vehicles and pedestrian safety: exploring the promise and
limits of pedestrian detection,” American journal of preventive medicine,
vol. 56, no. 1, pp. 1–7, 2019.

[11] A. M. Nagy and V. Simon, “Survey on traffic prediction in smart cities,”
Pervasive and Mobile Computing, vol. 50, pp. 148–163, 2018.

[12] Z. Lin, H. H. Liu, and M. Wotton, “Kalman filter-based large-scale
wildfire monitoring with a system of uavs,” IEEE Transactions on
Industrial Electronics, vol. 66, no. 1, pp. 606–615, 2018.

[13] R. S. Allison, J. M. Johnston, G. Craig, and S. Jennings, “Airborne op-
tical and thermal remote sensing for wildfire detection and monitoring,”
Sensors, vol. 16, no. 8, p. 1310, 2016.

[14] J. P. Dominguez-Morales, L. Duran-Lopez, D. Gutierrez-Galan, A. Rios-
Navarro, A. Linares-Barranco, and A. Jimenez-Fernandez, “Wildlife
monitoring on the edge: A performance evaluation of embedded neural
networks on microcontrollers for animal behavior classification,” Sen-
sors, vol. 21, no. 9, p. 2975, 2021.

[15] D. Schwartz, J. M. G. Selman, P. Wrege, and A. Paepcke, “Deployment
of embedded edge-ai for wildlife monitoring in remote regions,” in
2021 20th IEEE International Conference on Machine Learning and
Applications. IEEE, 2021, pp. 1035–1042.

[16] E. Garcı́a-Martı́n, C. F. Rodrigues, G. Riley, and H. Grahn, “Estimation
of energy consumption in machine learning,” Journal of Parallel and
Distributed Computing, vol. 134, pp. 75–88, 2019.

[17] A. Reuther, P. Michaleas, M. Jones, V. Gadepally, S. Samsi, and
J. Kepner, “Survey and benchmarking of machine learning accelerators,”
in 2019 IEEE high performance extreme computing conference. IEEE,
2019, pp. 1–9.

[18] M. Abrar, U. Ajmal, Z. M. Almohaimeed, X. Gui, R. Akram, and
R. Masroor, “Energy efficient uav-enabled mobile edge computing for
iot devices: A review,” IEEE Access, vol. 9, pp. 127 779–127 798, 2021.

[19] A. Arouj and A. M. Abdelmoniem, “Towards energy-aware federated
learning on battery-powered clients,” in Proceedings of the 1st ACM
Workshop on Data Privacy and Federated Learning Technologies for
Mobile Edge Network, 2022, pp. 7–12.

[20] A. Aral, V. De Maio, and I. Brandic, “Ares: Reliable and sustainable
edge provisioning for wireless sensor networks,” IEEE Transactions on
Sustainable Computing, 2021.

[21] A. F. Aljulayfi and K. Djemame, “A novel qos and energy-aware self-
adaptive system architecture for efficient resource management in an
edge computing environment,” in 35th UK Performance Engineering
Workshop 16 December 2019, 2019, p. 39.

[22] R. Ghosh, S. P. R. Komma, and Y. Simmhan, “Adaptive energy-aware
scheduling of dynamic event analytics across edge and cloud resources,”
in 2018 18th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing. IEEE, 2018, pp. 72–82.

[23] Y. Nan, W. Li, W. Bao, F. C. Delicato, P. F. Pires, Y. Dou, and A. Y.
Zomaya, “Adaptive energy-aware computation offloading for cloud of
things systems,” IEEE access, vol. 5, pp. 23 947–23 957, 2017.

[24] J. Silva, E. R. Marques, L. Lopes, and F. Silva, “Energy-aware adaptive
offloading of soft real-time jobs in mobile edge clouds,” Journal of
Cloud Computing, vol. 10, no. 1, pp. 1–21, 2021.

[25] I. U. Khan, M. A. Hassan, M. D. Alshehri, M. A. Ikram, H. J. Alyamani,
R. Alturki, and V. T. Hoang, “Monitoring system-based flying iot
in public health and sports using ant-enabled energy-aware routing,”
Journal of Healthcare Engineering, vol. 2021, 2021.

[26] R. Vales, J. Moura, and R. Marinheiro, “Energy-aware and adaptive
fog storage mechanism with data replication ruled by spatio-temporal
content popularity,” Journal of Network and Computer Applications, vol.
135, pp. 84–96, 2019.

[27] I. Brandic, “Sustainable and trustworthy edge machine learning,” IEEE
Internet Computing, vol. 25, no. 5, pp. 5–9, 2021.

[28] H. Sahar, A. A. Bangash, and M. O. Beg, “Towards energy aware object-
oriented development of android applications,” Sustainable Computing:
Informatics and Systems, vol. 21, pp. 28–46, 2019.

[29] A. E. Trefethen and J. Thiyagalingam, “Energy-aware software: Chal-
lenges, opportunities and strategies,” Journal of Computational Science,
vol. 4, no. 6, pp. 444–449, 2013.

[30] K. Eder, J. P. Gallagher, G. Fagas, L. Gammaitoni, and D. Paul, “Energy-
aware software engineering,” ICT-energy concepts for energy efficiency
and sustainability, pp. 103–127, 2017.

[31] K. Chinnappan, I. Malavolta, G. A. Lewis, M. Albonico, and P. Lago,
“Architectural tactics for energy-aware robotics software: A preliminary
study,” in Software Architecture: 15th European Conference, ECSA
2021, Virtual Event, Sweden, September 13-17, 2021, Proceedings.
Springer, 2021, pp. 164–171.

[32] S. Vos, P. Lago, R. Verdecchia, and I. Heitlager, “Architectural tactics
to optimize software for energy efficiency in the public cloud,” in 2022
International Conference on ICT for Sustainability. IEEE, 2022, pp.
77–87.

[33] J. Panerati, D. Sciuto, and G. Beltrame, “Optimization strategies in
design space exploration,” in Handbook of Hardware/Software Codesign.
Springer, 2017, pp. 189–216.

[34] G. H. S. Association. (2023) Pedestrian traffic fatalities by state:
2022 preliminary data. Accessed on 2023-04-12. [Online]. Available:
https://www.ghsa.org/resources/Pedestrians23

[35] T. Mohn. (2023) Pedestrian deaths on the rise
again, a walker dies every 75 minutes on america’s
roads. Accessed on 2023-04-12. [Online]. Available:
https://www.forbes.com/sites/tanyamohn/2023/02/28/pedestrian-deaths-
on-the-rise--again-a-walker-dies-every-75-minutes-on-americas-roads/

[36] E. T. S. Council. (2023) Five ways europe can tackle road deaths.
Accessed on 2023-04-12. [Online]. Available: https://etsc.eu/five-ways-
europe-can-tackle-road-deaths/

[37] C. S. Service. (2023) Road safety in the eu. Accessed on 2023-04-12.
[Online]. Available: https://ec.europa.eu/commission/presscorner/detail/
en/ip 23 953

[38] Centers for Disease Control and Prevention. (2022) Pedestrian safety.
Accessed on 2023-03-09. [Online]. Available: https://www.cdc.gov/
transportationsafety/pedestrian safety/index.html

[39] R. Shreyas, B. P. Kumar, H. Adithya, B. Padmaja, and M. Sunil,
“Dynamic traffic rule violation monitoring system using automatic
number plate recognition with sms feedback,” in 2017 2nd International
Conference on Telecommunication and Networks. IEEE, 2017, pp. 1–5.

[40] S. Alagarsamy, S. Ramkumar, K. Kamatchi, H. Shankar, A. Kumar,
S. Karthick, and P. Kumar, “Designing a advanced technique for
detection and violation of traffic control system,” Journal of Critical
Reviews, vol. 7, no. 8, pp. 2874–2879, 2020.

[41] M. Bolsunovskaya, A. Leksashov, S. Shirokova, and V. Tsygan, “Devel-
opment of an information system structure for photo-video recording of
traffic violations,” in E3S Web of Conferences, vol. 244. EDP Sciences,
2021, p. 07007.

[42] S. Amini, I. Gerostathopoulos, and C. Prehofer, “Big data analytics
architecture for real-time traffic control,” in 2017 5th IEEE international
conference on models and technologies for intelligent transportation
systems. IEEE, 2017, pp. 710–715.

[43] J. Barthélemy, N. Verstaevel, H. Forehead, and P. Perez, “Edge-
computing video analytics for real-time traffic monitoring in a smart
city,” Sensors, vol. 19, no. 9, p. 2048, 2019.

[44] G.-D. Voinea, C. C. Postelnicu, M. Duguleana, G.-L. Mogan, and
R. Socianu, “Driving performance and technology acceptance evaluation
in real traffic of a smartphone-based driver assistance system,” Inter-
national journal of environmental research and public health, vol. 17,
no. 19, p. 7098, 2020.

[45] I. Lashkov and A. Kashevnik, “Smartphone-based intelligent driver
assistant: context model and dangerous state recognition scheme,” in
Intelligent Systems and Applications: Proceedings of the 2019 Intelligent
Systems Conference Volume 2. Springer, 2020, pp. 152–165.

[46] G. Dobler, J. Vani, and T. T. L. Dam, “Patterns of urban foot traffic
dynamics,” Computers, Environment and Urban Systems, vol. 89, p.
101674, 2021.

[47] Y. Brun, G. Di Marzo Serugendo, C. Gacek, H. Giese, H. Kienle,
M. Litoiu, H. Müller, M. Pezzè, and M. Shaw, “Engineering self-adaptive
systems through feedback loops,” Software engineering for self-adaptive
systems, pp. 48–70, 2009.

[48] M. Salehie and L. Tahvildari, “Towards a goal-driven approach to action
selection in self-adaptive software,” Software: Practice and Experience,
vol. 42, no. 2, pp. 211–233, 2012.

[49] C. Krupitzer, F. M. Roth, S. VanSyckel, G. Schiele, and C. Becker, “A
survey on engineering approaches for self-adaptive systems,” Pervasive
and Mobile Computing, vol. 17, pp. 184–206, 2015.

[50] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, pp. 41–50, 2003.

[51] C. Ghezzi, A. Mocci, and M. Sangiorgio, “Runtime monitoring of
component changes with spy@ runtime,” in 2012 34th International
Conference on Software Engineering (ICSE). IEEE, 2012, pp. 1403–
1406.

[52] G. Karsai and J. Sztipanovits, “A model-based approach to self-adaptive
software,” IEEE Intelligent Systems and Their Applications, vol. 14,
no. 3, pp. 46–53, 1999.

[53] P. Arcaini, E. Riccobene, and P. Scandurra, “Formal design and ver-
ification of self-adaptive systems with decentralized control,” ACM
Transactions on Autonomous and Adaptive Systems, vol. 11, no. 4, pp.
1–35, 2017.

[54] E. Lee, Y.-D. Seo, and Y.-G. Kim, “Self-adaptive framework based on
mape loop for internet of things,” sensors, vol. 19, no. 13, p. 2996, 2019.

[55] L. Aultman-Hall, D. Lane, and R. R. Lambert, “Assessing impact
of weather and season on pedestrian traffic volumes,” Transportation
research record, vol. 2140, no. 1, pp. 35–43, 2009.

[56] T. Kim, D.-W. Sohn, and S. Choo, “An analysis of the relationship
between pedestrian traffic volumes and built environment around metro
stations in seoul,” KSCE Journal of Civil Engineering, vol. 21, pp. 1443–
1452, 2017.

[57] T. Rupprecht and Y. Wang, “A survey for deep reinforcement learning in
markovian cyber-physical systems: Common problems and solutions,”
Neural Networks, 2022.

[58] W. Stadler, Multicriteria Optimization in Engineering and in the Sci-
ences. Springer Science & Business Media, 1988, vol. 37.

[59] P. Ngatchou, A. Zarei, and A. El-Sharkawi, “Pareto multi objective opti-
mization,” in Proceedings of the international conference on, intelligent
systems application to power systems. IEEE, 2005, pp. 84–91.

https://www.ghsa.org/resources/Pedestrians23
https://www.forbes.com/sites/tanyamohn/2023/02/28/pedestrian-deaths-on-the-rise--again-a-walker-dies-every-75-minutes-on-americas-roads/
https://www.forbes.com/sites/tanyamohn/2023/02/28/pedestrian-deaths-on-the-rise--again-a-walker-dies-every-75-minutes-on-americas-roads/
https://etsc.eu/five-ways-europe-can-tackle-road-deaths/
https://etsc.eu/five-ways-europe-can-tackle-road-deaths/
https://ec.europa.eu/commission/presscorner/detail/en/ip_23_953
https://ec.europa.eu/commission/presscorner/detail/en/ip_23_953
https://www.cdc.gov/transportationsafety/pedestrian_safety/index.html
https://www.cdc.gov/transportationsafety/pedestrian_safety/index.html

[60] S. Verma, M. Pant, and V. Snasel, “A comprehensive review on nsga-ii
for multi-objective combinatorial optimization problems,” Ieee Access,
vol. 9, pp. 57 757–57 791, 2021.

[61] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: Nsga-ii,” IEEE transactions on evolu-
tionary computation, vol. 6, no. 2, pp. 182–197, 2002.

[62] Y. Kuo, T. Yang, and G.-W. Huang, “The use of grey relational analysis
in solving multiple attribute decision-making problems,” Computers &
industrial engineering, vol. 55, no. 1, pp. 80–93, 2008.

[63] Z. Wang and G. P. Rangaiah, “Application and analysis of methods for
selecting an optimal solution from the pareto-optimal front obtained
by multiobjective optimization,” Industrial & Engineering Chemistry
Research, vol. 56, no. 2, pp. 560–574, 2017.

[64] D. Ju-Long, “Control problems of grey systems,” Systems & control
letters, vol. 1, no. 5, pp. 288–294, 1982.

[65] G. Chia Yee, C. Jeng Feng, M. A. B. Chik, and M. Mokhtar, “Weighted
grey relational analysis to evaluate multilevel dispatching rules in wafer
fabrication,” Grey Systems: Theory and Application, vol. 11, no. 4, pp.
619–649, 2021.

[66] A. Mahmoudi, S. A. Javed, S. Liu, and X. Deng, “Distinguishing
coefficient driven sensitivity analysis of gra model for intelligent deci-
sions: application in project management,” Technological and Economic
Development of Economy, vol. 26, no. 3, pp. 621–641, 2020.

[67] H.-H. Wu, “A comparative study of using grey relational analysis
in multiple attribute decision making problems,” Quality Engineering,
vol. 15, no. 2, pp. 209–217, 2002.

[68] C.-J. Hsu and C.-Y. Huang, “Comparison of weighted grey relational
analysis for software effort estimation,” Software Quality Journal,
vol. 19, pp. 165–200, 2011.

[69] C. Pruteanu and C.-g. Haba, “Genfsm: A finite state machine generation
tool,” in Proc. 9th Int. Conf. Dev. Applicat. Syst, 2008, pp. 165–168.

[70] B. Vandeportaele, “A finite state machine modeling language and the
associated tools allowing fast prototyping for fpga devices,” in 2017
IEEE International Workshop of Electronics, Control, Measurement,
Signals and their Application to Mechatronics. IEEE, 2017, pp. 1–
6.

[71] P. Adamczyk, “Selected patterns for implementing finite state machines,”
in The 11th Conference on Pattern Languages of Programs, 2004.

[72] ——, “The anthology of the finite state machine design patterns,” in
The 10th Conference on Pattern Languages of Programs, 2003.

[73] S. M. Yacoub and H. H. Ammar, Pattern-oriented analysis and design:
composing patterns to design software systems. Addison-Wesley
Professional, 2004.

[74] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in Computer Vision–ECCV 2014: 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13.
Springer, 2014, pp. 740–755.

[75] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Optuna: A next-
generation hyperparameter optimization framework,” in Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2019.

[76] P. Dendorfer, A. Osep, A. Milan, K. Schindler, D. Cremers, I. Reid,
S. Roth, and L. Leal-Taixé, “Motchallenge: A benchmark for single-
camera multiple target tracking,” International Journal of Computer
Vision, vol. 129, pp. 845–881, 2021.

[77] R. Padilla, S. L. Netto, and E. A. Da Silva, “A survey on performance
metrics for object-detection algorithms,” in 2020 international confer-
ence on systems, signals and image processing. IEEE, 2020, pp. 237–
242.

[78] I. Alfonso, K. Garcés, H. Castro, and J. Cabot, “Modeling self-adaptative
iot architectures,” in 2021 ACM/IEEE International Conference on
Model Driven Engineering Languages and Systems Companion. IEEE,
2021, pp. 761–766.

[79] D. Giouroukis, A. Dadiani, J. Traub, S. Zeuch, and V. Markl, “A survey
of adaptive sampling and filtering algorithms for the internet of things,”
in Proceedings of the 14th ACM International Conference on Distributed
and Event-based Systems, 2020, pp. 27–38.

[80] V. Colombo, A. Tundo, M. Ciavotta, and L. Mariani, “Towards self-
adaptive peer-to-peer monitoring for fog environments,” in Proceedings
of the 17th Symposium on Software Engineering for Adaptive and Self-
Managing Systems, 2022, pp. 156–166.

[81] J. Mertz and I. Nunes, “Software runtime monitoring with adaptive
sampling rate to collect representative samples of execution traces,”
Journal of Systems and Software, p. 111708, 2023.

[82] D. Yuan, S. Park, and Y. Zhou, “Characterizing logging practices
in open-source software,” in 2012 34th International Conference on
Software Engineering. IEEE, 2012, pp. 102–112.

[83] A. Jain and E. Y. Chang, “Adaptive sampling for sensor networks,” in
Proceeedings of the 1st international workshop on Data management
for sensor networks: in conjunction with VLDB 2004, 2004, pp. 10–16.

[84] T. Lu, W. Xia, X. Zou, and Q. Xia, “Adaptively compressing iot data
on the resource-constrained edge,” in 3rd {USENIX} Workshop on Hot
Topics in Edge Computing, 2020.

[85] J. Cheng, Q. Ye, H. Jiang, D. Wang, and C. Wang, “Stcdg: An efficient
data gathering algorithm based on matrix completion for wireless sensor
networks,” IEEE Transactions on Wireless Communications, vol. 12,
no. 2, pp. 850–861, 2012.

[86] G. Jia, G. Han, J. Du, and S. Chan, “A maximum cache value policy
in hybrid memory-based edge computing for mobile devices,” IEEE
Internet of Things Journal, vol. 6, no. 3, pp. 4401–4410, 2018.

[87] A. C. Baktir, A. Ozgovde, and C. Ersoy, “How can edge computing
benefit from software-defined networking: A survey, use cases, and
future directions,” IEEE Communications Surveys & Tutorials, vol. 19,
no. 4, pp. 2359–2391, 2017.

[88] C. E. da Silva and R. de Lemos, “A framework for automatic generation
of processes for self-adaptive software systems,” Informatica, vol. 35,
no. 1, 2011.

[89] J. Cámara, D. Garlan, B. Schmerl, and A. Pandey, “Optimal planning
for architecture-based self-adaptation via model checking of stochastic
games,” in Proceedings of the 30th annual ACM symposium on applied
computing, 2015, pp. 428–435.

[90] E. M. Grua, I. Malavolta, and P. Lago, “Self-adaptation in mobile apps:
a systematic literature study,” in 2019 IEEE/ACM 14th International
Symposium on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS). IEEE, 2019, pp. 51–62.

[91] L. Ardito, “Energy aware self-adaptation in mobile systems,” in 2013
35th International Conference on Software Engineering (ICSE). IEEE,
2013, pp. 1435–1437.

[92] L. Ardito, M. Torchiano, M. Marengo, and P. Falcarin, “glcb: an energy
aware context broker,” Sustainable Computing: Informatics and Systems,
vol. 3, no. 1, pp. 18–26, 2013.

	Introduction
	Motivational Scenario
	An Approach to Design Energy-Aware Self-Adaptive Applications
	Defining the State-Based Adaptation Logic
	Solving the Multi-Objective Optimization Problem
	Extracting the Operation Mode Configurations
	Implementing the Self-Adaptive Application

	Empirical Evaluation
	Experimental Setting
	RQ1 - Meta-Heuristic VS Near-Exhaustive Search
	RQ2 - Objectives Trade-Off
	Threats to Validity

	Related Work
	Conclusions
	References

